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This document is a skeleton of the theoretical content of the Fall 2024 course MS-C1300
Complex Analysis at Aalto University. The skeleton includes statements of results and their
logical interdependencies, but no proofs, no examples, and no visualizations.

Instead, the hand-written lecture notes on the course home page correspond to the contents
of the lectures. They include discussions of examples and informal ideas as well as the main
theorems and their proofs. This theory skeleton is meant to complement the lectures as an
organizational document: to indicate the flow of the theory development, and to clarify the main
goals of the course and the purposes of the intermediate results.

An attempt is made to provide references to corresponding parts of the textbook: An Intro-
duction to Complex Function Theory (Undergraduate Texts in Mathematics) by Bruce Palka.

This skeleton is work in progress. It is guaranteed to contain mistakes, the number and
severity of which will be reduced with updates during the course. Please inform the lecturer
Kalle Kytola of errors that you notice!



Chapter 1

The complex number system

1.1 The field of complex numbers

Definition 1.1 (Complex numbers and their arithmetic operations [Palka1991, Sec. 1.1.1]). The
set of complex numbers is C = R X R, i.e., the set of pairs (z,y) of real numbers z,y € R.
The operations of addition and multiplication on C are defined by the formulas

(21, Y2) + (2, 42) = (1 + 22, 41 + o)
(@1, 91) - (@2,Y2) = (215 — Y1Ya, T1Ys + Y1 T2).
Denote 0 = (0,0) € C and 1 = (1,0) € C.
For z = (z,y) € C, denote —z = (—x, —y) € C and if z # 0 then denote 27! = (ZQIW, ﬁ) €
C.

We write a complex number (z,y) as x +iy. The compex number i = (0,1) € C is called the
imaginary unit.

Typically used variable names for complex number are z,w,{ € C etc.

Theorem 1.2 (The field of complex numbers [Palkal991, Sec. 1.1.1]).
The set C of compexr numbers with its operations of addition and multiplication, is a field,
i.e., the following properties hold for all z,w, zq, 24, 23 € C:

e z+w=w+ z (commutativity of addition)

o 2w = wz (commutativity of multiplication)

o 21+ (29 + 23) = (21 + 23) + 25 (associativity of addition)

o 21(2925) = (2129)25 (a@ssociativity of multiplication)

e 0=04+01=(0,0) € C satisfies z+ 0 = z (neutral element for addition)

e 1=1401i=(1,0) € C satisfies z- 1 = z (neutral element for multiplication)
o z+ (—2) =0 for any z € C (opposite element / additive inverse)

o zz71 =1 for any 2 € C\ {0} (multiplicative inverse)

o (21 + 29)w = zyw + zow (distributivity).

Proof. Straightforward calculations using the definitions of the operations (Definition 1.1). O



1.2 Conjugate, modulus, and argument

Definition 1.3 (Complex conjugate [Palkal991, Sec. 1.1.2]). The complex conjugate of a
complex number z = = + iy (where z,y € R) is the complex number Z = x — iy.

Lemma 1.4 (Properties of complex conjugate [Palkal991, Sec. I1.1.2 (1.1)]). For any z,w € C,
we have

zZ=2z, z+w=ZzZ+w, ZW = Z W,
Z+z Z—Z
R = =
Proof. Direct calculations. O

Definition 1.5 (Absolute value (modulus) [Palkal991, Sec. 1.1.2]). The absolute value (or
modulus) of a complex number z = z + iy (where z,y € R) is the nonnegative real number

|z] = /a2 +y? > 0.

Lemma 1.6 (Properties of absolute value [Palkal991, Sec. 1.1.2 (1.2)]). For any z,w € C, we

have

2 = 2%, |ew| =|2| |w,

Re(z) <z,  Im(z) < |z,

[z twl <zl +wl, [z +w] > |l2] = fwll.

Also, if z # 0, then

a2 4] = [l

IER 21 2|

Proof. Straightforward. O

Definition 1.7 (Argument [Palkal991, Sec. I.1.2]). A real number § € R is an argument of a
complex number z € C if

z=|z2| (cos(@) +1i sin(@)).

(Note/warning: For a nonzero complex number z, it is convenient to denote 6 = arg(z), but
this is an abuse of notation, the argumentis defined only modulo addition of integer multiples of
27.)

The principal argument of a nonzero complex number z € C is its unique argument on the
interval (—m, 7], and it is denoted by Arg(z).

Lemma 1.8 (Discontinuity of the principal argument). The principal argument Arg: C\ {0} —
(—m, m| is continuous on the subset C\ (—o0,0], but it is discontinuous on the negative real azis
(—00,0].



1.3 The polar form

Definition 1.9 (Complex exponential function). We define the complex exponential func-
tion exp : C — C by

exp(x +1iy) = e (cos(y) + i sin(y)) for z,y € R,

where e” is the usual real exponential. We also use the notation e* = exp(z) for complex
exponentials.
The exponential with purely imaginary argument takes the form of Euler’s formula

el? = cos(#) + i sin(h) for 6 € R.
Lemma 1.10 (Properties of the complex exponential). For any z,w € C we have
AT = % eV,
For any z € C we have
e =¢2 |e*| =e™®) ) arg(e?) = Jm(z) (mod 27).
For z,w € C we have €* = v if and only if z = w + 27win for somen € 7.
Proof. ... O
Lemma 1.11 (Polar form). Every complex number z € C can be written in the polar form
z=re'? where r >0 and 0 € R.

The modulus of z is the number r = |z| above. If z # 0, then 8 above is a choice of the argument
of z, i.e., 0 = Arg(2) + 2mm for some m € Z.

Proof. .. O
Lemma 1.12 (Multiplication in polar form [Palkal991, Sec. 1.1.2 (1.6)]). For any z,w € C,

. . 1 10’ . .
written in polar form as z = re'? and w = r'e'?" | the product can be written in polar form as

2w = 7’ e 00
In other words,
|zw] = |2| |w] and arg(zw) = arg(z) + arg(w) (mod 27).
Proof. .. O

Theorem 1.13 (De Moivre’s formula [Palkal991, Sec. 1.1.2 (1.7)]). For any 6 € R andn € Z,
we have

(cos(8) +i sin(h))" = cos(nf) + i sin(nf).

Proof. Induction using Lemma 1.12. O



Lemma 1.14 (Roots of unity). For any n € N, the solutions z € C to the equation

2" =1
are the n distinct complex numbers
o 2mj 2mj
z; = e2mi/n = cos (ﬂ) + 1 sin <l‘7> where j =0,1,...,n— 1.
n n

These solutions are called the (complex) nth roots of unity.
In particular, we have the polynomial factorization

n—1

M1 = H (Z—€i2ﬂj/n>.

J=0

Proof. .. O

1.4 Functions of a complex variable

1.4.1 Polynomials and rational functions

Definition 1.15 (Polynomial). Polynomial functions are functions p : € — C of the form
p(2) = a2 + a1 2"+ a2t ag

where ag,a4,...,a a,, € C are coefficients.

n—1s

Definition 1.16 (Rational function). Rational functions are functions f : D — C which can
be written as ratios f(z) = 28

denominator polynomial ¢ has no zeroes.

of two polynomials p,q: C — C on a domain D C C where the

1.4.2 Exponentials and branches of logarithms
Definition 1.17 (Principal complex logarithm). The principal logarithm is the function
Log: C\{0} —=C
Log(z) = log|z| +iArg(2),
where log |z| is the usual natural logarithm of the positive real number |z| > 0 and Arg(z) €
(—m, ] is the principal argument of the nonzero complex number z # 0.

(Directly from this definition one sees that for z € C \ {0} we have e
solutions w to e* = z are of the form w = Log(z) + 2win where n € Z.)

Log(2) — Al complex

Definition 1.18 (Branches of complex logarithm). A branch of the logarithm is a continuous
function ¢: U — C on an open set U C C such that

el?) = 4 forall z e U.

For example, the principal logarithm Log restricted to the open set C \ (—oc,0] is called
the principal branch of the logarithm. Note that this principal branch cannot be extended
continuously to the negative real axis.

(Note that since e # 0 for all w € C, any branch of the logarithm must exclude the origin
from its domain of definition, 0 ¢ U.)



1.4.3 Complex power functions

Definition 1.19 (Principal complex power function). Let o« € C. The principal (complex)
ath power function is the function C\ {0} — C given by

2 b 2% = exbos(z)

(Note: Integer powers have more direct natural definitions. For n € N we simply define
z" by recursive multiplication and the function z + 2" is continuous and defined in all of C
and coincides with the principal power function with & = n on C\ {0}. We also define z~™ by
recursive multiplication of the inverse z~* of z, and the function z 2™ is continuous on C\ {0}
and coincides with the principal power function with & = —n. For n = 0 we define 2° = 1 for
any z € C, and this coincides with the principal power function with & = 0 on C\ {0}.)

Given a branch £: U — C of logarithm on an open set U C C, we obtain a branch of the ath
power function on U by the formula z - e®(?). Using the same branch of the logarithm for the
power functions, we have z%2# = zo+8,

1.4.4 Branches of nth roots

Definition 1.20 (Principal nth root function). Let n € N. The principal (complex) nth
root of z € C\ {0} is

{1/2 — Zl/n — e%Log(z).

(It follows directly from the definition and the properties of complex exponential that ( /z)™ =
2. All complex solutions w to w™ = z are of the form w = ({/z where ¢ = €2™/" with
j=0,1,...,n—1, i.e., ¢ is one of the n complex nth roots of unity.)



Chapter 2

Complex derivatives and analytic
functions

2.1 Real linear maps versus complex linear maps

The right abstract way of understanding the differential of a function is as a linear approximation
to a function locally. The key difference between real analysis and complex analysis is whether
one uses real linear maps or complex linear maps.

Definition 2.1 (Linear map). Let K be a field (for example K =R or K= C), and let V and W
be vector spaces over K. A function L : V — W is said to be K-linear if

L(vy +vy) = L(vy) + L(vy) for all vy,vy €V,
L(cv) = ¢ L(v) forallve V,cekK.

Such a function L is also called a K-linear map (or a K-linear transformation) between the
spaces V and W.

The complex plane C = R? can be seen either as a 2-dimensional real vector space or as a
1-dimensional complex vector space. In particular, it makes sense to talk about both R-linear
maps C — C and C-linear maps C — C.

More generally, any complex vector space can be seen as a real vector space (of twice the
same dimension), and any complex linear map becomes a real linear map. The converse is not
true! Let us elaborate on this in a simple example which will soon be seen to pertain to the
difference of complex differentiability and real differentiability.

Remark: Identifying C = R? (and choosing basis vectors 1,i € C for C seen as a 2-dimensional
vector space), we see that an R-linear map L : C — C can be encoded in a 2 x 2 matrix with real
entries,

M = [ @ b ] € R#*?
c d

in such a way that

L(z +iy) = (ax + by) + i(cz + dy).



Remark: A C-linear map L : C — C can be encoded in a single complex number A € C (or
more pedantically, in a 1 x 1 matrix [\] € C'*1), in such a way that

Lz = )\z.

We can write A = a + i3, with a = Re(A), 8 = IJm(A) € R. We can also write z = = + iy and
obtain the expression

Lz +1iy) = (o« +if8)(z + iy) = (ax — By) + i(Bz + ay).

In other words, seen as a real-linear map, the complex multiplication by A corresponds to the

matrix
a —f
M[ﬁ ! ]

This clearly shows that not every real-linear map C — C is complex linear. It also gives an explicit
set of equations for the entries of the matrix of a real-linear map characterizing complex-linearity,
which turn out to be very closely related to the Cauchy-Riemann equations.

Lemma 2.2 (Complex linear versus real linear maps of C). Let L : C — C be a R-linear map
represented in the basis 1,1 by the matric M = [ CCL 2 } € R?>*2.  Then the following are
equivalent:

o L is C-linear;

e b=—canda=d.

Proof. Clear from the above discussion. O

2.2 Complex derivative

Definition 2.3 (Complex derivative [Palkal991, Sec. III.1.1]). Let f: A — C be a complex-
valued function defined on a subset A C C of the complex plane, and let z, € A be an interior
point of the subset.

The f is said to have a complex derivative

f(z) = f(=)
2=z zZ— Zy

at zq, if the limit on the right hand side above exists.
(In complex analysis we often drop the epithet “complex” above, and simply call f’(z,) the
derivative of f at z,.)

Lemma 2.4 (Local linear approximation). If a function f: A — C has complex derivative
f'(zy) = A € C at a point z, € A, then we can write a linear approximation

f(2) = f(z0) + (2 = 29) A + €(2),

where the error term € is small near z, in the sense that lim,_, , <2 — .
0 [z=20]

Proof. .. O

Lemma 2.5 (Complex differentiability implies continuity [Palkal991, Sec. II1.1.1]). If a function
f+ A— C has a complex derivative f'(z,) at a point zy € A, then it is continuous at z,.

Proof. .. O



2.3 Cauchy-Riemann equations

Lemma 2.6 (Complex derivative implies differentiability). Let f: A — C be a function defined
on a set A C C, and let u: A — R and v: A — R be its real and imaginary parts, viewed as
real-valued functions of two real variables, u(x,y) = Re(f(z+iy)) and v(z,y) = Im(f(z+iy)), so
that f =u—+iv. If f has a complex derivative f'(z,) at an interior point z, = xo+ iy, € A, then
u and v are differentiable at (x4,v,) and their partial derivatives satisfy the Cauchy-Riemann
equations

ou ov ou ov
%(%v%) = %(xOvyo) and @(x07y0) = 7%(‘T07y0)'

(These equations are equivalent to the differential df(zo,yo): R2 — R? being C-linear when
we identify R> = C.)
We can then write the derivative at z, in any of the following ways:

, ou . Ov v . O0u
f'(20) = %(IO:?JO) th%(xo,yo) = %(IanO) *1871(%73/0)
ou ou ov

. L Ov
= %(xo,y0>_1@($0ayo) = @(m07y0)+1%(x07y0)'

Proof. ... O

2.3.1 Differentiation rules

Lemma 2.7 (Linearity of the derivative [Palkal991, Sec. I11.1.2 (3.4)]). If two functions f,g: A —
C have complex derivatives f'(zy), 9 (29) at a point z, € A, then the sum function f + g has a
complex derivative at z, given by

(f +9)(20) = f'(20) + 9 (2)-

If a function f: A — C is has a complex derivative f'(z,) at a point z, € A and ¢ € C is a
complex number, then the function cf has compler derivative

(cf) (20) = ¢ f'(20)
at zg.

Proof. .. O

Lemma 2.8 (Leibniz rule [Palkal991, Sec. I111.1.2 (3.4)]). If two functions f,g: A — C have
complex derivatives f'(zy),9 (z9) at a point z, € A, then the product function fg has complex
derivative

(£9)"(z0) = f'(20) 9(20) + f(20) 9’ (20)

at zg.

Proof. .. O

Lemma 2.9 (Derivative of a quotient [Palkal991, Sec. II1.1.2 (3.4)]). If two functions f,g: A —
C have complex derivatives f'(zy), g (z9) at a point z, € A and g(z,) # 0, then the quotient
function f/g has complex derivative

/7

(f) (29) = [ (20) 9(20) — f(20) 9" (20)

g 9(20)? .

at zg.



Proof. .. O

Lemma 2.10 (Chain rule [Palka1991, Thm IIL.1.1]). If f: A — B C C is differentiable at z, € A
and g: B — C is differentiable at f(z,) € B, then the composition go f: A — C is differentiable
at zy, with derivative

(9o f) (20) = f'(20) 9" (f(2))-
Proof. .. O

Lemma 2.11 (Derivative of inverse [Palkal991, Thm III.4.1]). Suppose that f is a complez-
valued function defined on a subset of the complex plane, which has a nonzero complex derivative
f'(zy) # 0 at a point z, and which has a local inverse function near z, in the sense that there
are open sets U,V C C with zy € U and f(zy) € V, and the restriction of f to U is continuous
U — V with a continuous inverse. Then the local inverse function f~':V — U has complex
derivative at wy := f(zy) given by

b
f(z0)
Proof. .. O

(f71) (wo) =

2.3.2 Analytic functions

Definition 2.12 (Analytic function [Palkal991, Sec. II1.1.3]). A function f: U — C defined on
an open set U C C is said to be analytic (or holomorphic) if it is complex differentiable at
every point z, € U.

Theorem 2.13 (Cauchy-Riemann equations [Palkal991, Thm II1.2.2]). Let f: U — C be a
function defined on an open set U C C, and let u: U — R and v: U — R be its real and
tmaginary parts, viewed as real-valued functions of two real variables,

u(x,y):iﬁe(f(x—i—iy)) and v(x,y)zﬁﬂi(f(x—l—iy))

so that f =u+iwv.
Then the following are equivalent:

e The functions u and v are differentiable at every point in U and their partial derivatives
satisfy the Cauchy-Riemann equations

ou Ov ou ov

or oy " oy~ o
inU.
e The function f is analytic.
Proof. .. O

Lemma 2.14 (Analytic functions are continuous). Every function f: U — C which is analytic
on an open set U C C is also continuous on U.

Proof. .. O

10



Lemma 2.15 (Polynomials are analytic). Every polynomial function p: C — C is analytic.
Proof. .. O

Lemma 2.16 (Rational functions are analytic). Every rational function f: U — C is analytic
on its domain of definition U C C.

Proof. .. O

Lemma 2.17 (The complex exponential is analytic). The complex exponential function exp: C —
C is analytic. Its (complex) derivative at z € C is exp’(z) = exp(z).

Proof. .. O

Lemma 2.18 (Branches of nth root functions are analytic). The principal branch of the nth
root function z « /z is analytic on its domain C\ (—o0, 0].

(Different branch choices can be made to obtain analyticity on other domains, but for n > 2,
no branch of {/z can be made analytic on all of C.)

Proof. .. O

2.3.3 Consequences of Cauchy-Riemann equations

Lemma 2.19 (Analytic functions of vanishing derivative). Suppose that f: D — C is a analytic
function on a connected open subset D C C of the complex plane such that f'(z) = 0 for all
z € D. Then f is a constant function.

Proof. .. O

Theorem 2.20 (Criteria for constantness of a analytic function). Suppose that f: D — C is a
analytic function on a connected open subset D C C of the complex plane. If any of the functions
u=Re(f): D >R, v=Tm(f): D =R, |f]: D— R, is constant on D, then f is itself a constant
function.

Proof. .. O

Lemma 2.21 (Harmonicity of real and imaginary parts). Suppose that f: U — C is a analytic
function on an open subset U C C of the complex plane. Let u,v: U — R denote the real and
imaginary parts of f defined by u(z,y) = Re(f(x +1iy)) and v(z,y) = Im(f(xz +iy)). Assume
moreover that that u and v are twice continuously differentiable (later it will be shown that this
assumption holds automatically by the analyticity of f). Thenu and v are harmonic functions,
i.e., they satisfy

0? 02
Au=0 and Av =0, where A = a2t a2

Proof. .. O

Definition 2.22 (Harmonic conjugate). Suppose that u: U — R is harmonic function on an
2 . . . . . . . . 02 02

open subset U C R*, i.e., a twice continuously differentiable function satistying #u + 22U = 0

on U. A function v: U — R is called a harmonic conjugate of u if the function

r+iy = u(x,y)+iv(z,y)

is analytic on U.

11



Lemma 2.23 (Local existence of harmonic conjugates). Let B = B(zy;r) C C be a disk in the
complez plane. Suppose that u: B — R is harmonic function on B. Then a harmonic conjugate
v: B— R of u in the disk B exists and is unique up to an additive constant.

Proof. .. O

12



Chapter 3

Contour integration

3.1 Complex-valued integrals

Definition 3.1 (Integral of a complex-valued function). Let f: [a,b] — C be a complex-valued
continuous function defined on a closed interval [a,b] C R. We define the integral of f as

b b b
/ fH)ydt = / Re(f(t))dt + i/ Jm(f(t)) dt.

(Note that on the right hand side we have just Riemann integrals of the continuous real-valued
functions ¢t > Re(f(t)) and t > Im(f(t)).)

Lemma 3.2 (Complex linearity of complex-valued integrals). If f,g: [a,b] — C are complez-
valued continuous functions defined on a closed interval [a,b] C R, then the integral of their sum
18

b b b
/(f(t)+g(t))dt = / f(t)dt+/ g(t)dt.

If f: [a,b] — C is a complez-valued continuous function defined on a closed interval [a,b] C R,
and A € C is a complex number, then the integral of the scalar multiple of f is

/b)\f(t)dt = A/bf(t)dt.

Proof. .. O

Lemma 3.3 (Fundamental theorem of calculus for complex-valued integrals). Suppose that
f:]a,b] = C is a continuously differentiable complez-valued function on a closed interval [a,b] C

R. Denote its derivative by f(t) = %f(t). Then for the integral of the derivative of f we have

b
/ fydt = fb) - f(a).

Proof. .. O

13



3.2 Paths in the complex plane

Definition 3.4 (Path [Palkal991, Sec. IV.1.1]). A path in the complex plane is a continuous
function ~: [a,b] — C from a closed interval [a,b] C R to C.

When A C C is a subset of the complex plane, we say that v is a path in A if v(¢) € A for all
t € [a,b].

If the starting point and the end point of the path v are the same, v(a) = (b), then we say
that v is a closed path.

We sometimes want to disregard the parametrization, and view a path v: [a,b] — C as a
subset of the complex plane. This subset is the range {y(t) |t € [a,b]} C C of the parametrizing
function, but with a slight abuse of notation we often just write v C C also for this subset.

(Note that the subset v C C is compact, by continuity of 7: [a,b] — C and compactness of
[a,b].)

Definition 3.5 (Smooth path [Palka1991, Sec. IV.1.2]). A path v: [a,b] — C is smooth if it is
continuously differentiable, i.e., the derivative

4(t) = 2(0)

with respect to the parameter ¢ exists for all ¢ € [a, ] (one-sided derivatives at the interval end
points a and b), and defines a continuous complex-valued function ¢  4(t) on [a, b].

Definition 3.6 (Contour / piecewise smooth path [Palkal991, Sec. IV.1.2]). A contour (also
called a piecewise smooth path) is a continuous function v: [a,b] — C such that for some
finite subdivision ¢ = ¢, < t; < ... < t, = b, the restrictions 7|[tj717tj] to the subintervals
[t;1,t;] C [a,b] are smooth paths for each j =1,...,n.

If the starting point and the end point of the contour « are the same, v(a) = v(b), then we
say that v is a closed contour.

Definition 3.7 (Reverse path [Palkal991, Sec. IV.1.4]). Given a path v: [a,b] — C, the reverse
path 5: [a,b] — C is the path defined by
F(t) =v(a+b—1t) for ¢t € [a, b].

Definition 3.8 (Concatenation of paths [Palkal991, Sec. IV.1.4]). Given path «: [a,b] — C and
n: [e,d] — C with y(b) = n(c) (the starting point of n coincides with the end point of v), the
concatenation of v and 7 is the path v ®n: [a,b+ d — ¢] — C defined by

(@) for t € [a, ],
rem® = {n(c—i—t—b)) for t € [b,b+d — ]

(The slightly cumbersome formula in the second case is due to the fact that we need to attach
the two parameter intervals of lengths b — a and d — ¢ to each other, and we have, somewhat
arbitrarily, chosen to glue them to form the interval [a,b + d — ].)

Definition 3.9 (Reparametrization of paths [Palkal991, Sec. IV.1.5]). Given a path ~: [a,b] —
C and a continuous increasing bijection ¢: [¢,d] — [a, ], we define the reparametrization of
~ by ¢ as the path

vog: [ed] T
t =y (6(t)).
Note that

14



e ¢ 1:]a,b] = [c,d] is also a continuous increasing bijection (a continuous bijection from the
compact [a, b] is automatically a homeomorphism; see Lemma A.33) and reparametrization
can be undone by rereparametrizing by ¢ !;

o If both v and the reparametrization function ¢ are smooth (continuously differentiable),
then the reparametrized path o ¢ is also smooth;

e Ifboth v and the reparametrization function ¢ are piecewise smooth, then the reparametrized
path v o ¢ is also piecewise smooth, i.e., a contour.

3.3 Integrals along paths

Definition 3.10 (Contour integral along a smooth path [Palkal991, Sec. IV.2.1]). Let f: A — C
be a continuous function defined on a subset A C C. Let 7: [a,b] — A be a smooth path in A.
We define the integral of f along ~ as

b
[1@a: = [ )i a
v a
(Here A(t) = %y(t) denotes the derivative of the smooth path v with respect to its parameter

t)

Sometimes it is appropriate to integrate functions with respect to the arc length in the
following sense.

Definition 3.11 (Arc length integral along a smooth path [Palkal991, Sec. IV.2.1]). Let f :
A — C be a continuous function defined on a subset A C C. Let v: [a,b] — A be a smooth path
in A. We define the integral of f with respect to the arc length of 7 as

b
[ = [ ram)po

(Here %(t) = &~(t) € C denotes the derivative of the smooth path v with respect to its
parameter ¢, and |¥(¢)| > 0 denotes the absolute value of this derivative.)

In order to extend the definition of contour integrals to piecewise smooth paths, we note that
the definition behaves additively under path concatenation.

Lemma 3.12 (Contour integrals and smooth path concatenation [Palkal991, Lem IV.2.1(iv)]).
If a smooth path v in A is a concatenation of smooth paths ny,...,n,, and f: A — C is a
continuous function defined on A C C, then we have

lf(z)dz = z:/n f(z)dz

and

[s@a = Y [ s

g=1n;

Proof. .. O

15



By virtue of the above, the following gives a well-defined meaning to integrals along piecewise
smooth paths.

Definition 3.13 (Contour integral [Palkal991, Sec. IV.2.1]). Let f : A — C be a continuous
function defined on a subset A C C. Let v: [a,b] — A be a piecewise smooth path in A, which
is a concatenation of smooth paths n;,...,n,. We define the integral of f along v as

/Wf(z)dz = il/n f(z)dz=.

Definition 3.14 (Arc-length integral). Let f : A — C be a continuous function defined on a
subset A C C. Let 7: [a,b] — A be a piecewise smooth path (i.e., a contour) in A, which is a
concatenation of smooth paths 7,,...,7n,. We define the integral of f with respect to the
arc length of v as

l £(2)lde] = Z / FE .

Definition 3.15 (Length of a path or a contour). Let v: [a,b] — C be a piecewise smooth path
(i.e., a contour) in C. The length £(~y) of v is defined as

() = / a2,

Lemma 3.16 (Reparametrization invariance of integrals [Palkal991, Lem IV.2.1(v)]). Let ~
be a piecewise smooth path in A, and let ¥ be obtained from ~ by an orientation-preserving
reparametrization. Then for any continuous function f: A — C we have

/:Yf(z)dz = /’Yf(z)dz
é F)ldz) = / £(2) ldz).

Lemma 3.17 (Contour integrals and path reversal [Palkal991, Lem IV.2.1(iii)]). If f: A = C
is a continuous function defined on A C C, and ~y is a piecewise path in A, then for the contour
integral and the arc length integral behave as follows under path reversal: then we have

and

and

é 7)1z = / £(2) 1

Proof. .. O

Lemma 3.18 (Linearity of integrals [Palkal991, Lem IV.2.1(i-ii)]).
Let A C C be a subset of the complex plane let and ~y: [a,b] — A be a contour in A.

16



If f,g: A — C are continuous functions defined on A, then the contour integral and the arc
length integral of their sum are

[+ gt ax = / F()dz+ / g(2) dz

y

JUCEYEEE / F(2) el + / 6(2) |dz].

~y

If f: A — C is a complex-valued continuous function defined on A, and A € C is a complex
number, then the contour integral and the arc length integral of the scalar multiple of f are

//\f(z)dz :)\/f(z)dz

Af(z)ldz] =X [ f(z)|d|.
[ z)|dz /7 z)|dz
Proof. .. O

Lemma 3.19 (Triangle inequality for contour integrals [Palkal991, Lem IV.2.1(vi)]). Let f :
A — C be a continuous function defined on A C C, and let v be a contour in A. Then we have

[ f(2)d| < / ()] 2]
Proof. .. O

Corollary 3.20 (An a priori bound for contour integrals). Let f : A — C be a continuous
function defined on A C C, and let v be a contour in A. Assume that |f(2)] < M for all points
z on the contour ~v. Then we have

14

.

where £() = fv |dz| denotes the length of the contour .
Proof. .. O

< ML(y),

The following slightly technical auxiliary result will only be used later (for winding number
properties and for Cauchy’s formula for the derivative). But since the result only requires contour
integration, the natural logical place for it is here. Also, strictly speaking, we only need the cases
k =1 and k = 2 in this lemma; but including general k& € N gives the quickest route to Cauchy’s
formula for higher order derivatives.

Lemma 3.21 ([Palkal991, Lemma V.1.6]). Let v be a contour in C, and let h: v — C be a
continuous function on the contour (we slightly abuse the notation here to identify the contour
as a subset v C C). Let k € N be a positive integer. Define H: C\ vy — C by

H(z):/ MO e,

(C—2)"
Then H is analytic on C\ v, and its derivative at z € C\ 7y is given by
h(¢)
H(z)=k /7kd<.
(= 2)kt
Proof. .. O
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3.4 Primitives

Definition 3.22 (Primitive of a function [Palkal1991, Sec. IV.2.3]). Let f : U — C be a function
defined on an open subset U C C. A primitive of f is a function F' : U — C such that F is
analytic (i.e., complex differentiable) on U,

F'(z) = f(z) forall z € U.
Theorem 3.23 (Fundamental theorem of calculus for contour integrals [Palkal1991, Thm IV.2.2]).

Suppose that f: U — C is a continuous function on an open set U C C, and that f has a primitive
F:U — C. Then for any contour 7: [a,b] = U we have

/ f(2)dz = F(y(b) — F(v(a)).

In particular for any closed contour v in U, we have

%f(z)dz = 0.

Proof. .. O
Lemma 3.24 (Existence of primitives for monomials). For n € {0,1,2,...}, the monomial
function f(z) = 2™ has a primitive F(z) = %Hz"“ + ¢ (with ¢ € C arbitrary) in the whole
complez plane C.

Forn € {—2,-3,—4, ...}, the monomial function f(z) = 2™ has a primitive F(z) = %Hz"HJr
¢ (with ¢ € C arbitrary) in the punctured complex plane C\ {0}.

The monomial function f(z) = z~1 = % does not have a primitive in the punctured complex

plane C\ {0}.
Proof. .. O

Theorem 3.25 (Characterization of the existence of primitives). Let f: U — C be a continuous
function on an open set U C C. Then the following conditions are equivalent:

(a) f has a primitive on U;

(b) the contour integrals fv f(2)dz of f along contours v in U only depend on the starting point
and the end point of ~y;

(c) for all closed contours v in U we have 3% f(z)dz=0.

Proof. .. O
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Chapter 4

Cauchy’s theorem and
consequences

4.1 Convex, star-shaped, and simply connected domains

Definition 4.1 (Line segment). Given two points z;,z, € C in the complex plane, the line
segment between z; and z, is the path

v [0,1] - C
() =2+t (2 — 2).

We also often view the line segment as a subset of C rather than a parametrized path, and
we then denote it by

[21,25] = {z1—|—t(22—zl)‘t6 [0,1]} c C.

Definition 4.2 (Convex set). A subset A C C of the complex plane is called convex if for any
two points z, z5 € A, the line segment between them is contained in the subset,

[21,25] C A.

Definition 4.3 (Star-shaped set). A subset A C C of the complex plane is called star-shaped
if there exists a point z, € A such that for any z € A, the line segment between z, and z is
contained in the subset,

[2,,2] C A.
Lemma 4.4 (Convex sets are star-shaped). Any nonempty convez set is star-shaped.
Proof. .. O

Lemma 4.5 (Star-shaped sets are path connected and simply connected). Any star-shaped set
U C C is path connected and simply connected.

Proof. .. O
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4.2 Cauchy’s integral theorem

Lemma 4.6 (Goursat’s lemma [Palkal991, Lem V.1.1)). Suppose that a function f: U — C s
analytic on an open set U C C. Then for any closed triangle /N C U, we have

}5 f(z)dz=0.
[o7AN
Proof. .. O

Lemma 4.7 (Existence of primitives in star-shaped domains). FEvery analytic function f: U — C
on a star-shaped domain U C C has a primitive in U.

Proof. .. O

Theorem 4.8 (Cauchy’s integral theorem for star-shaped domains [Palkal991, Thm V.1.5]).
Suppose that a function f: U — C is analytic on a star-shaped open subset U C C. Then for any
closed contour v in U we have

7§ F(2)dz = 0.

Proof. .. O

Corollary 4.9 (Local Cauchy’s integral theorem [Palkal991, Thm V.5.1]). Suppose that a func-
tion f: U — C is analytic on a open set U C C. Then for any disk B C U contained in the
domain U and any closed contour v in B we have

%f(z) dz = 0.

Proof. .. O

4.3 Cauchy’s integral formula

Theorem 4.10 (Cauchy’s integral formula for star-shaped subdomains [Palkal991, Thm V.2.3]).
Suppose that a function f: U — C is analytic on an open set U C C, and suppose that v is a
closed contour in U parametrizing the boundary of a star-shaped Jordan subdomain V C U in a
counterclockwise orientation. Then for any point z € V. we have

1 I©
)= g $ 50

Proof. .. O

By far the most commonly used special case of Theorem 4.10 is when the contour 7 is a circle,
encircling a disk whose closure is contained in the domain of the analytic function (recall that
disks are convex and therefore star-shaped).

20



Corollary 4.11 (Cauchy’s integral formula for circles). Suppose that a function f: U — C is
analytic on an open set U C C. Let B(zy;1) C U be a closed disk contained in U. Then for any
point z € B(zy;r) we have

! G
f2) = 5 ;ézw) L

where the circle 0B(zy; 1) is parametrized in the counterclockwise orientation.

Proof. .. O

4.4 Ideas underlying the generalizations

The generalizations of Cauchy’s integral theorem and Cauchy’s integral formula are based on the
following homotopy invariance property of contour integrals (whose proof we do not do in detail
in this course).

Lemma 4.12 (Homotopy invariance of contour integrals). Let f: U — C be an analytic function
on an open set U C C, and let v, and 7y, be two closed contours in U which are homotopic to

each other in U. Then we have
7{ f(z)dz :% f(z)dz.
Yo 71

This readily implies the following generalization of Cauchy’s integral theorem.

Theorem 4.13 (Cauchy’s integral theorem [Palkal991, Thm V.5.1]). Suppose that a function
f:U — C is analytic on a open set U C C. Then for any contractible closed contour v we have

f F(z)dz = 0.

In particular, if U is simply connected, then for any closed contour v in U we have

iz =0,

and the analytic function f has a primitive in U.

Proof. .. O

The other ingredient of generalization of Cauchy’s integral formula to arbitrary contours and
points not lying on those contours is the winding number of a contour around a point.

Definition 4.14 (Winding number). Let z € C, and let v be a closed contour in C\ {z}. The
winding number of v around z is defined as

1
n7<z>_2miﬁc_z.

Lemma 4.15 (Winding number concatenation and reversal). Let v and n be closed contours in
C both starting and ending at the same point z, € C. Then for any point z € C\ (yUn) we have

n’y@n(z) = I‘l,y(Z)—f—I‘ln(Z)

and for any point z € C\ v we have



Proof. .. O

Lemma 4.16 (Winding number properties). Let vy be a closed contour in C. Then the winding
numbers n.(z) of points z € C\ vy satisfy:

(a) z+ . (z) is constant on each connected component of C\ v;
(b) n.(2) =0 for all z in the unbounded connected component of C\ ~;

(c) If v is a Jordan contour and V- C C\ vy is the bounded connected component of C\ v, then
either n,(z) =1 for all z € V ormn_ (z) = —1 for all z € V.

Proof. .. O

Lemma 4.17 (Homotopy invariance of winding numbers). Let z € C be a point and let v and 7
be two closed contours in C\ {z} which are homotopic to each other in C\ {z}. Then we have

n,(z) =n,(2).
Proof. .. O
The following is then a version of Cauchy’s integral formula which has no restrictions on the

closed contour and no restrictions on the position of the point with respect to the contour, except
that the point must not lie on the contour (for otherwise there is a singularity in the integrand).

Theorem 4.18 (Cauchy’s integral formula [Palkal991, Thm V.2.3]). Suppose that a function
f: U — C is analytic on an open simply connected subset U C C of the complex plane. Then for
any closed contour v in U we have

(—=z
Proof. .. O

?{f(C) d¢ = 2min,(z) f(2).

4.5 Analyticity of derivatives

Lemma 4.19 (Analyticity of derivatives [Palkal991, Thm V.3.1]). If a function f: U — C is
analytic on an open set U C C, then its derivative [’ is also analytic on U. In particular, then
f is continuously differentiable, f € C1(U).

Proof. .. O

Corollary 4.20 (Analyticity of higher derivatives [Palkal991, Cor V.3.2]). If a function f: U —
C is analytic on an open set U C C, then its derivatives f', f”, ..., f®, ... of all orders are also
analytic on U. In particular, then f is infinitely differentiable, f € C>(U).

Proof. Straightforward induction using Lemma 4.19. O

Theorem 4.21 (Morera’s theorem [Palkal991, Thm V.3.3]). Let f: U — C be a continuous
function on an open set U C C. If f has the property that

?gA f(z)dz=0

for any closed triangle N C U, then f is analytic on U.
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Proof. .. O

Theorem 4.22 (Cauchy’s integral formula for derivatives). Suppose that a function f: U — C
is analytic on an open simply connected subset U C C of the complex plane. Then for any closed
contour v in U, any n € N, and any point z € U we have

) 1) = e T dc

"~ 2mi

Proof. .. O

Lemma 4.23 (Cauchy’s estimate for derivatives [Palkal991, Thm V.3.6]). Suppose that a func-
tion f: U — C is analytic on an open set U C C containing the disk B(zy;r) C U, and suppose
that there exists a constant M > 0 such that |f(z)] < M for all z € B(zy;r). Then for anyn € N
and any z € B(zy;r) we have the following bound for the nth derivative ™ of f:

'Mr
)y < 2T
IS G

In particular, for the center point z, of the disk, we have
|F™ ()| < n! M7,

Proof. .. O

4.6 Liouville’s theorem

Theorem 4.24 (Liouville’s theorem [Palkal991, Thm V.3.7]). If a function f: C — C on the
entire complex plane is analytic and bounded, then f is a constant function.

Proof. .. O

4.7 The fundamental theorem of algebra

Theorem 4.25 (Fundamental theorem of algebra [Palkal991, Thm V.3.8]). Every non-constant
polynomial function p: C — C has a root, i.e., there exists a z, € C such that p(z,) = 0.

Proof. .. O

Corollary 4.26 (Polynomial factorization [Palkal991, Thm V.3.9]). A complez-coefficient poly-
nomial p(z) = ay + a;2 + ay2* + - + a,,2" of degree n € N can be factored as

p(2) = c(z=2) (2 = 2) = (2 = 2,)

where ¢ = a, # 0, and zy,...,z, € C are the roots of p (with repetition according to the
multiplicities of the roots).

Proof. This follows from Theorem ?? by induction on the degree of the polynomial, using the
polynomial division (Euclidean algorithm in the ring of univariate polynomials, see MS-C1081
Abstract Algebra). O
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4.8 Maximum principle

Theorem 4.27 (Maximum principle for analytic functions [Palka1991, Thm V.3.10]). Let f: D —
C be an analytic function on a connected open set D C C. Suppose that there exists a point z5 € D
such that

If(2) <|f(z)|  forallzeD.
Then f is a constant function.
Proof. .. 0

Corollary 4.28 (Maximum principle for analytic functions continuous up to the boundary
[Palkal991, Cor V.3.11]). Let D C C be a bounded connected open set. Let f: D — C be a
continuous function on its closure which is analytic in D. Then z  |f(2)| attains its mazimum
in D at some point of the boundary dD.

Proof. .. O

Lemma 4.29 (Schwarz’s lemma [Palkal991, Thm V.3.14)). Let f: B(0;1) — C be an analytic
function on the open unit disk such that |f(2)] < 1 for all z € B(0;1) and f(0) = 0. Then we
have

[f(0)] <1 and lf(z)] < |z| forall z € B(0;1).
Furthermore, unless f is of the form f(z) = Az for some A € C with |A\| =1, then we have
Il (0)] <1 and [f(z)] < |z| forall z € B(0;1)\ {0}.

Proof. .. O

4.9 The mean value property

Theorem 4.30 (Mean value property for analytic functions). Suppose that a function f: U — C
is analytic on an open set U C C containing the closed disk B(z;r) C U. Then we have

=g 1 ©) gt

a % OB(z;r) Ci z

Proof. .. O
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Chapter 5

Power series

5.1 Uniform convergence

Definition 5.1 (Uniform convergence [Palkal991, Sec. VIL.1.1]). Let (f,,),cn be a sequence of
functions f,: X — C, and let f: X — C also be a such function. We say that the sequence
(fn)nen converges uniformly to f (on X) if for every € > 0 there exists an N € N such that
for all n > N we have

|fulz) = flz)] <e for all z € X.

Lemma 5.2 (Cauchy criterion for uniform convergence [Palkal991, Thm VIL.1.2]). Let f,,: A —
C, n € N, be complez-valued functions defined on the same set A. Then the sequence (f,)nen
converges uniformly on A if and only if for every e > 0 there exists an N € N such that for all
m,n > N and all z € A we have |f,(z) — f,(2)] < e.

(When (f,,)nen Satisfies the condition above, it could be called a uniform Cauchy sequence
on A.)

Proof. .. O

Lemma 5.3 (Continuity is preserved in uniform limits [Palkal991, Thm VII.1.1]). Let X be a
metric space (e.g., R, C, or a subset of these). If a sequence (f,)nen 0f continuous functions
fn: X = C converges uniformly to a function f: X — C, then f is continuous.

Proof. See MS-C1541 Metric Spaces. O

Lemma 5.4 (Integration commutes with uniform limits [Palkal1991, Thm VIL.1.1]). If a sequence
(fr)nen of continuous functions f,: [a,b] = C on a closed interval [a,b] C R converges uniformly
to a function f: [a,b] — C, then we have

b

b
lim fn(a;)dx:/ f(z)dx.

n—oo
a

Proof. .. O

Corollary 5.5 (Contour integration commutes with uniform limits [Palka1991, Thm VII.1.1]).
If a sequence (f,,)nen Of continuous functions f,,: A — C on a subset A C C of the complex plane
converges uniformly to a function f: A — C, then for any piecewise smooth path 7y in A we have

lim [ f,(z)dz= /f(z) dz.

n—oo
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Proof. This follows straightforwardly from the definition of contour integration and Lemma 5.4
above. O

Definition 5.6 (Convergence uniformly on compacts [Palkal991, Sec. VII.1.2]). Let (f,),en be
a sequence of functions f,,: A - Con A C C, and let f: A — C also be a such function. We
say that the sequence (f,,),cn converges uniformly on compacts (UOC) to f if for every
compact subset K C A the restrictions f,|x: K — C converge uniformly on K to f|x: K — C.
We then write

UoC
fo—F as n — oo.

(This notion is also called by the alternative names locally uniform convergence and
normal convergence.)

Lemma 5.7 (UOC limit of analytic functions [Palkal991, Thm VIIL.3.1]). Suppose that functions
fis fa, ... : U = C are analytic functions on an open set U C C and the sequence (f,,)),,cn converges
uniformly on compacts to a function f. Then f is analytic on U. Moreover, for any k € N, the

sequence (fy(lk))ngw of kth derivatives converges uniformly on compacts to f*.

Proof. .. O

5.2 Complex series

Definition 5.8 (Complex series [Palkal991, Sec. VIL.2.1]). Let z,2,, 23,... € C be complex
numbers. For N € N, define the Nth partial sum of these as

N
Sw= Sz = mb oty
n=1

We say that the series Zzozl z,, converges if the sequence (Sy)yey Of partial sums has a limit,
and we then denote

=

o0
g z, = lim Z .
n Nooo n

n=1 n=1

(Obvious modifications to the above definition are made if the terms’ indexing starts from
n = 0 or some other index, and the notation is correspondingly changed to, e.g., ZZO:O.)

. . o0
Lemma 5.9 (Terms of a convergent series tend to zero). If a complex series .~ z, converges,
n=1"n
then we have

lim z, =0.
n—oo

Proof. .. O

Lemma 5.10 (Geometric series). The geometric series
o0
Zz" = 14+z+224+23 4,
n=0

with ratio z € C converges if and only if |z| < 1. In that case its sum is

> 1
n __
;Z T 1—z
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Proof. .. O

Definition 5.11 (Absolute convergence of a complex series). A complex series 220:1 z,, is said

to converge absolutely if the series of absolute values Zf;l |z,,| converges.

Lemma 5.12 (Absolute convergence implies convergence). If a complex series converges abso-
lutely, then it converges.

Proof. .. O
Lemma 5.13 (D’Alembert’s ratio test). Suppose that 220:1 z,, is a complex series such that the
limit
z
r= lim | n+1‘

exists. Then:

(i) If r < 1, then the series Zf;l z,, converges absolutely.

(i) If r > 1, then the series Zfil z,, does not converge.

Proof. .. O

5.3 Series of functions

Definition 5.14 (Series of functions [Palkal991, Sec. VII.2.2]). Let f, f5, fs3,... be complex-
valued functions on a set A. For NV € N, define their Nth partial sum function Fy: A — C
by

N
Fy(2) = > fu(2) = fi() + -+ fy(2).
n=1
We say that the function series Zzozl f,, converges pointwise if the sequence (Fy(z)) Nen of

partial sums has a limit at every z € A. We say that the function series Z:;l f,, converges
uniformly on A if the sequence (Fly)yey of partial sum functions converges uniformly on A.
We say that the function series Z:;l f, converges uniformly on compacts if the sequence
(Fy)nen of partial sum functions converges uniformly on compacts.

The limit function is then denoted by Zzozl fn-

(Obvious modifications to the above are made if the terms’ indexing starts from n = 0 or
some other index, and the notation is correspondingly changed to, e.g., Zzio.)

Lemma 5.15 (Weierstrass M-test [Palkal991, Thm VIL.2.2]). Suppose that My, M,,... > 0 are
nonnegative numbers such that the series Zzozl M, converges. Suppose also that for each n € N,
fn: X = C is a function on X such that |f,(x)| < M, for all x € X. Then the series Z:;l I
converges absolutely and uniformly on X.

Proof. .. O
Lemma 5.16 (Series of analytic functions [Palkal991, Thm VIIL.3.2]). Suppose that functions

fi, fa, .. : U — C are analytic functions on an open set U C C such that the series 220:1 fn
converges uniformly on compacts to a function f: U — C. Then f is analytic on U. Moreover,

for any k € N, the series Zzozl f,@ of kth derivatives converges uniformly on compacts to f*¥.

Proof. .. O
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5.4 Power series

Definition 5.17 (Power series [Palkal991, Sec. VIL.3.3]). Let z, € C be a point in the complex
plane and let ag, aq, ay ... € C be coeflicients. A function series of the form

(oo}
Za’n (2= 20)" = ag +ay (2 — 2p) + ay (2 — %)% + -
n=0

is called a power series centered at z.

Lemma 5.18 (Abel’s theorem). If a power series

00
D (z—z)"
n=0

converges at z = w € C, then it converges absolutely for all z € C such that |z — zy| < |w — zy].

Proof. ... O

Corollary 5.19 (Abel’s theorem in the contrapositive). If a power series

00
Z Ay, (Z - ZO)n
n=0

does not converge at z = w € C, then it does not converge at any z € C such that |z—zy| > |w—2zg].

Proof. .. O

Definition 5.20 (Radius of convergence). The radius of convergence of a power series

o0
Dy (z—z)"
n=0

is defined as

R = sup{z—zo|

o0
Z a, (z—zg)" converges}.

n=0

From Lemma 5.18 and Corollary 5.19 it follows that the power series ZZO:O a, (z — zy)"
converges for all z € C such that |z — z5| < R and diverges for all z € C such that |z — z,| > R.
The disk B(z,; R) is called the disk of convergence of the power series Z:o:o a,, (z—zy)™.

(If R = 400, we interpret B(z,; R) = C.)

Lemma 5.21 (D’Alembert’s ratio test for the radius of convergence). Suppose that for the
coefficients of a power series

the limit

exists. Then the radius of convergence R of the power series is R = p.
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Proof. .. O

Theorem 5.22 (Hadamard’s formula for the radius of convergence [Palkal991, Thm VII.3.3]).
Let z, € C be a point in the complex plane and let ag, a1, a4 ... € C be coefficients. The radius of
convergence of a power series

0o
Z ay, (Z - ZO)n
n=0

is given by the formula

1
R =

limsup,, , /]a,|’
1

with the conventions T = 0 and 5 = +oo0.

Proof. .. O

Lemma 5.23 (Analyticity of power series [Palkal991, Thm VIL.3.3]). Let z, € C be a point in
the complex plane and let ay,aq,a, ... € C be coefficients. Suppose that the power series

FE = (s )"

n=0

has radius of convergence R > 0. Then it defines an analytic function f on the disk B(zy; R).
The derivative of f is given by the power series

P =S nan (- 2.

Moreover, the coefficients a;, are related to the kth derivatives of f at z, through the formula

Proof. .. O

Lemma 5.24 (Uniqueness of power series representation). Suppose that two power series ZZO:O a,, (z—

2o)" and Z;O:O b, (z — zy)™ converge in a disk B(zy;r) of radius v > 0 and represent the same
function

Zan (z—2zy)" = an (z—z9)" for z € B(zg;7).
n=0 n=0

Then their coefficients must be equal: a, = b, for alln.

Proof. .. O
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5.5 Taylor series and local representation of analytic func-
tions

Theorem 5.25 (Taylor series of analytic functions [Palkal991, Thm VII.3.4]). Suppose that
f: U — C is an analytic function on an open set U C C which contains a disk B(zq;r) C U.
Then the function f can be represented in B(zy;1) as a power series

oo fn)(,
foy =3 L)
n=0 :

n

Moreover, this is the unique power series centered at z, that representats f in a neighborhood of
2g-

Proof. .. O

Theorem 5.26 (Equivalent characterizations of analyticity). Let f: U — C be a continuous
function on an open set U C C. Then the following are equivalent:

e f is analytic on U;
e for any z € U there exists a neighborhood of z in which f has a primitive;

e for any z € U there exists a neighborhood of z in which f can be represented as a convergent
power Sseries.

Proof. .. O

Lemma 5.27 (No vanishing of all derivatives at a point [Palka1991, Thm VIIL.1.1]). Suppose
that f: D — C is an analytic function on a connected open set D C C. If there exists a point
29 € D such that f™(z,) =0 for all n € N, then f is a constant function.

Proof. .. O

Theorem 5.28 (Factor theorem for analytic functions [Palkal991, Thm VIII.1.2]). Suppose that
f+ D — C is a non-constant analytic function on a connected open set D C C, and z, € D is a
point where f(zy) = 0. Then f can be uniquely represented as

f(z)=(2—2)"g(z)  forzeD,
where m € N and g: D — C is an analytic function such that g(z,) # 0.
Proof. .. 0

Corollary 5.29 (Local representation of analytic functions [Palkal991, Cor VIII.1.3]). Suppose
that f: D — C is a non-constant analytic function on a connected open set D C C. Then for
any zo € D, we can write f uniquely in the form

f(2) = flz0) + (2= 29)" g(z)  forze D,
where m € N and g: D — C is an analytic function such that g(z,) # 0.
Proof. Apply Theorem 5.28 to the function z — f(z) — f(z,). O
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Theorem 5.30 (L’Hospital’s rule for analytic functions [Palkal991, Thm VIII.1.4]). Let f and
g be functions that are analytic in a neighborhood of z, such that f(z,) =0 and g(z,) = 0. Then
we have
tim L)y L)
2=z g(2) 2=z ¢/(2)

)

understood in the sense that either both limits exist and are equal to each other, or else neither
limit exists.

Proof. .. O

Theorem 5.31 (Discrete mapping theorem [Palka1991, Thm VIIL.1.5]). Suppose that f: D — C
is a non-constant analytic function on a connected open set D C C. Then the set of zeros of f
is discrete, i.e., for every zo € D such that f(z,) =0, there exists a r > 0 such that f(z) # 0 for
all z € B(zy;r) \ {2}

Proof. .. O

Corollary 5.32 (Principle of analytic continuation [Palkal991, Cor VIII.1.6]). Let f,g: D — C
be two analytic functions on a connected open set D C C. If f(z) = g(z) for all z in some subset
of D which has an accumulation point in D, then we have f(z) = g(z) for all z € D.

Proof. .. O

5.6 Laurent series

Definition 5.33 (Doubly infinite series [Palkal991, Sec. VII.2.1]). A doubly infinite series of
complex numbers is a series of the form

o0
Z Zp =t Zot itttz Tt

n=—oo

where ..., 2_5,2_1, %, %1, %, ... € C. We say that such a series converges to s € Ciffor alle > 0
there exists an N € N such that for all m, > N and m_ < —N we have

.y
‘ E zn—s‘<€.
n=m_

Lemma 5.34 (Convergence of doubly infinite series [Palka1991, Lem VIL.2.1]). A doubly infinite

series

oo

Z Zp=rrtrzgtzg gttt

n=—oo
e}
Z

o0
neoZn and > "z, converge.

of complex numbers converges if and only if both the series >

Proof. ... O
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Definition 5.35 (Laurent series [Palka1991, Sec. VI1.3.4]). A Laurent series centered at z, € C
is a doubly infinite series of functions of the form

o0
zZ Z a,(z—zy)"
n=—oo

a_ a_
- + (2_50)2 + Z—lzo +U/0 +a1(z—20)+a2(2_20)2 +

Lemma 5.36 (Annulus of convergence of Laurent power series [Palkal991, Thm VIL.3.5]).
Consider a Laurent series

Denote

-1
p_ =limsup V/|a_,|, Py = (limsup Y/ |an|) .
n—o0

n—oo

Then the series ZZC;OO a,(z— zy)™ converges for all z is the annulus

A, p (20) = {z eC ‘ p_<lz—zl < p+}.

Moreover, the convergence is uniform on compact subsets of A, , (20), and the series defines
an analytic function f(z) on the annulus A, , ().

Proof. .. O

Theorem 5.37 (Laurent series for analytic functions [Palkal991, Thm VIL.3.6]). Suppose that
f:U — C is an analytic function on an open set U C C which contains an annulus

Ay (20) = {z eC ‘ r < |z—z| < r2}

for some 2z, € C and 0 <1y <r,. Then the function f can be uniquely represented in A, , (z)
as a series

oo}

F@ =Y an(z—z)",

n=—oo

where the coefficients a,,, for n € Z, are given by

1 7{ f(2)
a, = — ——dz for any r € (ry,ry).
2w o5 (2g:) (z — zg)" Tt b2

Proof. .. O
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Chapter 6

Isolated singularities and residues

6.1 The extended complex plane

Definition 6.1 (The Riemann sphere). The extended complex plane is the set
C=CuU{x},

where oo is a symbol added to C to represent a single point at infinity. The set C is given a
topology in such a way that open sets in C remain open in C, and sets of the form {z € C ‘ |z| >
M} for M > 0 form a neighborhood basis at occ.

(This topology makes C homeomorphic to the 2-dimensional sphere in three-dimensional

space, and C is also called the Riemann sphere.)
For example a function f: U — C has limit lim__,, f (z) = 00 at z, if for any M > 0 there
exists a § > 0 such that |f(z)| > M whenever 0 < |z — 2| < d.

6.2 Isolated singularities of analytic functions

Definition 6.2 (Isolated singularity [Palkal991, Sec. VIII.2.1]). Let f : U — C be an analytic
function on an open set U C C. We say that f has an isolated singularity at z, € C if
B(zp;r) \{zp} C U for some r >0 but 2z, ¢ U.

Definition 6.3 (Classification of isolated singularities [Palkal1991, Sec. VIII.2.1]). Let 2z, € C be
an isolated singularity of an analytic function f : U — C. Let r > 0 be such that B(zy;r)\{zy} C
U, so that by Theorem 5.37 f can be represented in B(zy;r) \ {z,} uniquely as a Laurent series

f(Z) = i CLn(Z - ZO)n'

n=—oo

Depending on the coeflicients «a,, of negative indices n < 0, we distinguish three types of singu-
larities:

o f has a removable singularity at z, if a,, = 0 for all n < 0;
« f has a pole of order m € N at 2z, if a_,, # 0 and a,, = 0 for all n < —m;

o f has an essential singularity at z, if a,, # 0 for infinitely many n < 0.
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Definition 6.4 (Residue at an isolated singularity [Palkal991, Sec. VIII.2.1]). Let z, € C be an
isolated singularity of an analytic function f : U — C. Let r > 0 be such that B(zy;r)\{z,} C U,
so that by Theorem 5.37 f can be represented in B(zy;7) \ {z,} uniquely as a Laurent series

=3 anz—z)"

The coefficient a_, is called the residue of f at z, and is denoted Res, (f) =a_; € C.

Theorem 6.5 (Removable singularity characterization [Palkal991, Thm VIII.2.1 and Thm VIII.2.2]).
Let zy € C be an isolated singularity of an analytic function f : U — C. Then the following
conditions are equivalent:

(R-1) The singularity of f at zy is removable (i.e., all negative index Laurent series coefficients
of f expanded near z, vanish).

(R-2) There exists an analytic function f:UuU {29} — C such that f(z) = f(z) forall z € U.
(R-3) The limit lim,_,, f(2) exists in C.

(R-4) The function f is bounded in some punctured disk B(zq;7) \ {29} with r > 0.

Proof. .. O

Theorem 6.6 (Characterization of poles [Palkal991, Thm VIII.2.3 and Thm VIIL.2.4]). Let
29 € C be an isolated singularity of an analytic function f : U — C. Then the following
conditions are equivalent:

(P-1) The singularity of f at z, is a pole (i.e., finitely many Laurent series coefficients of f
near z, are nonzero).

P-2) There exists anm € N = {1,2,...} such that z > (z—z)™ f(2) has a removable singularity
0
and a nonzero limit as z — z,.

(P-3) The function f has the limit lim,_,, f(z) = oo at z,.
Proof. .. O

Theorem 6.7 (Characterization of essential singularities [Palkal1991, Thm VIII.2.6 and Thm VIIL.2.7]).
Let z, € C be an isolated singularity of an analytic function f : U — C. Then the following
conditions are equivalent:

(E-1) The singularity of f at z, is essential (i.e., infinitely many Laurent series coefficients of
f near z, are nonzero).

(E-2) For any small § > 0, the image f[B(zy;0)\ {z,}] is dense in C.

(E-3) The limit lim f(z) does not exist in the extended complex plane C = C U {oo}.

z—2g

Proof. .. O
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6.3 The residue theorem

Theorem 6.8 (Residue theorem [Palkal991, Thm VIIL.3.1]). Let U C C be an open set and
v a contractible closed contour in U. Let f: U\ S — C be an analytic function with isolated
singularities at a countable set S C U of points. Then

P10z =201 3, () Res, ()

wesS

Proof. .. O

Corollary 6.9 (Residue theorem for Jordan contours [Palkal991, Cor VII1.3.2]). Let U C C be
an open set and S C U a discrete subset of it. Let D be a Jordan domain such that D C U and
0D NS =0. Let v be a closed contour traversing the boundary 0D of the Jordan domain in the
positive orientation. Let f: U\ S — C be an analytic function with isolated singularities at the
points of S. Then

ff(z) dz = 2mi Z Res,, (f).

weSND

Proof. .. O
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Appendix A

Topological preliminaries

A.1 Metrics and related concepts

Definition A.1 (Metric). A metric on a set X is a function d: X x X — [0, 00) such that for
all py,py, p3 € X we have

d(py,p3) < d(py,pe) +d(pe,p3) (triangle inequality)
d(p1,p2) = d(py, p1) (symmetricity)
d(py,ps) = 0 if and only if p; = p,. (separation of points)

The set X equipped with the metric d on it is called a metric space.

Lemma A.2 (Metric in the complex plane). The formula
d(z,w) = |z — w| for z,we C

defines a metric on the complex plane C.
(Thus C becomes a metric space. Also any subset of C, in particular R C C, becomes a metric
space when equipped with the metric given by the above formula restricted to the subset.)

Proof. .. O

Definition A.3 (Ball (disk)). Let X be a metric space with metric d: X x X — [0,00). Let
Do € X be a point and let r > 0.
The set

Bpyir) = {p € X | d(p,py) <}

is called an open ball in X, centered at p,, and with radius r.
The set

B(poir) = {p €X ‘ d(p,py) < T}
is called a closed ball in X, centered at p,, and with radius r.

(In the case of the complex plane C, the term disk is often used instead of the general metric
space theory term ball.)
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Definition A.4 (Interior point). Let X be a metric space, and A C X a subset. A point p € A
is said to be an interior point of A if for some r > 0 we have B(p;r) C A.

Definition A.5 (Exterior point). Let X be a metric space, and A C X a subset. A point
p € X\ A is said to be an exterior point of A if for some r > 0 we have B(p;r) C X \ A.
(It is easy to see that the exterior points of A are exactly the interior points)

Definition A.6 (Boundary). Let X be a metric space, and A C X a subset. A point p € X is
said to be a boundary point of A if for all » > 0 we have that B(p;r) contains points of A and
X\ A (ie. B(p;r)NA#0Qand B(p;r)\A+0).

The set of all boundary points of A is denoted A and called the boundary of A.

(It is easy to see that the boundary A C X is exactly the set of points of X which are
neither interior nor exterior points of A.)

Definition A.7 (Open set). Let X be a metric space. A subset U C X is said to be an open
set if each point p € U is an interior point of U.

Definition A.8 (Closed set). Let X be a metric space. A subset F' C X is said to be a closed
set if the complement X \ F' C X is an open set.
(Equivalently, each point p € X \ F in the complement of F is an exterior point of F.)

Definition A.9 (Boundedness). Let X be a metric space. with metric d: X x X — [0, 00).

A subset A C X is bounded if there exists a number M > 0 such that d(p,q) < M for all
p,q € A. (If X is nonempty, an equivalent definition would be that A is bounded if it is a subset
of some ball in X.)

A function f: Z — X with values in a metric space X is bounded if the set f[Z] C X of its
values is a bounded subset of X.

(In the case X = C we have the following further characterizations: A subset A C C is
bounded if and only if there exists an R > 0 such that |2|] < R for all z € A. A function
f: Z — C is bounded if and only if there exists an R > 0 such that |f(z)| < R for all z € Z.)

A.2 Limits

Definition A.10 (Limit). Let X be a metric space and let (x,,),cy be a sequence of points in
X. We say that the sequence (x,,),,c converges to a limit z € X if for any ¢ > 0 there exists
an N € N such that for all n > N we have z,, € B(x;¢) (i.e., d(z,,2) < ). We then denote

W T =
(Tt is straightforward to check that the limit is unique if it exists.)
Let then X and Y be metric spaces, with respective metrics dy and dy, and let f: X — Y
be a function. We say that the function f has a limit y € Y at a point p, € X if for any € > 0
there exists a 0 > 0 such that for all p € B(py;9) \ {py} we have f(p) € B(y;e). We then denote
lim f(p) =y.
P—Po
(It is straightforward to check that the limit is unique if it exists.)
(Equivalently, written in terms of distances, lim,, po | (p) = y means that for any € > 0 there

exists a & > 0 such that we have dy (f(p),y) < & whenever 0 < dx(p,p,) < 9.)
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Lemma A.11 (Limits in the complex plane). For a sequence (z,),en 0f complexr numbers we
have

lim z, =2
n—oo

if and only if
lim Re(z,) =Re(z) and lim TJm(z,) = Tm(z).

n—oo n—oo

Let X be a metric space, let f: X = C a complez-valued function on X, and let p, € X be a
point. Then we have

if and only if

Proof. .. O

Lemma A.12 (Operations with complex limits). Let (z,),cy and (w,),cn be complex number
sequences converging to limits

lim z, =2 and lim w, =w.
n—oo n—oo

Then we have

Jir&(zn—i—wn) = z+w, Jgrgo(znwn) = zw, nhﬁrglow— = — ifw+#0.

Let X be a metric space, let py € X be a point, and let f,g: X — C be two complex-valued
functions on X such that

lim f(p)=2 and lim g(p) = w.

Then we have
. B : _ o J® oz
Jm (fp) +9(p) = 2w, lim (f(p)g(p)) = 2w, lim 05 = o0 if w0,

Proof. The arguments are similar to the proofs given in MS-C1541 Metric Spaces for the
real-valued cases. O

Definition A.13 (Cauchy sequence). ..

Lemma A.14 (Every real Cauchy sequence converges). If a real number sequence (x,,),en @S
Cauchy, then it converges to a limit lim,, , x, € R.

(This property is known as completeness of the metric space R.)

Proof. See MS-C1541 Metric Spaces. O

Lemma A.15 (Every complex Cauchy sequence converges). If a complex number sequence
(Zp)nen s Cauchy, then it converges to a limit lim,, ,  z, € C.
(This property is known as completeness of the metric space C.)

Proof. See MS-C1541 Metric Spaces.
(Idea: This follows from Lemma A.14 by considering real and imaginary parts separately and
picking a subsequence of a subsequence.) O
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A.3 Continuity

Definition A.16 (Continuity). Let X and Y be metric spaces. A function f: X — Y is said to
be continuous at a point p, € X if lim, ,, f(p) = f(py)-
(Equivalently, for every e > 0 there exists a § > 0 such that for any p € B(p,; ) we have

f(p) € B(f(po);e)-)

A function f: X — Y is said to be continuous if it is continuous at every point p, € X.

Lemma A.17 (Continuity of complex-valued functions). Let X be a metric space, and let
f+ X = C be a complez-valued function on X. Then f is continuous at py € X if and only if its
real and imaginary parts p — Re(f(p)) and p — Im(f(p)) are continuous at p;.

Proof. .. O

Corollary A.18 (Continuity of coordinate projections). The coordinate projections

Re: C—R and Jm: C—R
z > Re(2) z = Jm(z)
are continuous functions.

Proof. .. O

Lemma A.19 (Operations with continuous complex-valued functions). Let X be a metric space,
let py € X be a point, and let f,g: X — C be two complex-valued functions on X which are
continuous at py. Then also the functions

pr f(p) +9p) and p= f(p)g(p)

are continuous at pg.

If moreover g(py) #+ 0, then also the function p + % is continuous at p.

Proof. ... O

Lemma A.20 (Continuity characterization). Let X and Y be metric spaces, and let f: X =Y
be a function. Then the following are equivalent:

e f is a continuous function;

o for every open set V C Y, the preimage f1[V] ={z € X | f(z) € V} is an open set in X;

o for every closed set A C'Y, the preimage f'[A] = {z € X| f(x) € A} is a closed set in X.
Proof. See MS-C1541 Metric Spaces. O

Lemma A.21 (Composition of continuous functions). Let X, Y, and Z be metric spaces, and
let f: X =Y and g:' Y — Z be functions. If f is continuous at xy € X and g is continuous at
f(zg) €Y, then the composition go f: X — Z is continuous at x.

(The composition g o f is defined by the formula (go f)(z) = g(f(x)).)

Proof. .. O
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Corollary A.22 (Real multivariate polynomials are continuous). Let N € N be a natural num-
ber, and let c, ,, € R be real numbers for n,m € {0,1,...,N}. Then the function p: C — R
defined by

N N
pla+iy) =D > cpn,a™y"

m=0n=0
s continuous.

Proof. See MIS-C1541 Metric Spaces. O

Definition A.23 (Uniform continuity). Let X and Y be metric spaces. A function f: X — Y
is uniformly continuous if for every € > 0 there exists a 6 > 0 such that for any p, € X and
p € B(py; 0) we have f(p) € B(f(po);e)-

Lemma A.24 (Uniform continuity implies continuity). If a function f: X — Y is uniformly
continuous, then it is continuous.

Proof. See MIS-C1541 Metric Spaces.
(The easy proof is also a good exercise.) O

A.4 Connectedness and path-connectedness

Definition A.25 (Connectedness). A set A C X in a metric space X is disconnected if there
exists a continuous surjective function f: A — {0,1} onto the two-element discrete set {0,1}.
Otherwise A is connected; then every continuous function A — {0, 1} must be either constant
0 or constant 1.

(The usual definition in topology textbooks reads slightly differently, but it is equivalent to
the one we chose here by Lemma A.20.)

Definition A.26 (Path-connectedness). A set A C X in a metric space X is path connected
if for any two points p, ¢ € X there exists a continuous function v: [0,1] — X such that y(0) = p
and (1) = ¢ (a parametrized path in X starting from p and ending at q).

Lemma A.27 (Path-connectedness implies connectedness). If a metric space X is path-connected,
then it is connected.

Proof. See MIS-C1541 Metric Spaces. O

Lemma A.28 (Open connected sets are path-connected). Suppose that U C C is an open subset
of the complex plane. Then U is connected if and only if it is path-connected.

Proof. See MIS-C1541 Metric Spaces. O

A.5 Compactness

Definition A.29 (Compactness). Let X be a metric space. A subset K C X is compact if
every sequence (,,),cy of points x,, € K has a subsequence (z,, )¢y which converges to a limit
limy,_, oz, € K in the set K.

Theorem A.30 (Bolzano-Weierstrass theorem). A subset B C R of the real line is compact if
an only if it is closed and bounded.
A subset A C C of the complex plane is compact if an only if it is closed and bounded.
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Proof. See MS-C1541 Metric Spaces. O

Theorem A.31 (Boundedness of continuous functions on compacts). Suppose that X is compact.
Then every continuous function f: X — R is bounded.

Proof. .. O

Lemma A.32 (On a compact domain continuity implies uniform continuity). If X is compact
and a function f: X —Y is continuous, then it is uniformly continuous.

Proof. See MIS-C1541 Metric Spaces. O

Lemma A.33 (Continuous bijection from a compact domain is a homeomorphism). Let X and
Y be metric spaces and assume that X is compact. Then for any continuous bijection f: X =Y,
also the inverse f~1: Y — X is continuous.

Proof. See MIS-C1541 Metric Spaces. O

Theorem A.34 (Cantor’s intersection theorem [Palkal991, Thm I1.4.5]). Let X be a metric
space. Suppose that K., Ky, Ks,... are nonempty compact subsets of X nested so that K; D
Ky, D K3 D ---. Then the intersection ﬂzozl K,, is nonempty.

Proof. See MS-C1541 Metric Spaces. O

A.6 Simple connectedness

Definition A.35 (Path homotopy for closed paths). Let X be a metric space and 7, : [a,b] —
X and vy: [a,b] = X two closed paths in X. If there exists a continuous function (called a
homotopy)

I':[0,1] x [a,b] - X
such that
I0,t) =v,(t) and T(1,¢) =~,(t) for all ¢ € [a, b]
and
I'(s,a) =T(s,b) for all s € [0,1],
then we say that the closed paths 7, and 7y, are homotopic.

Definition A.36 (Contractible path). Let X be a metric space. A closed path 7: [a,b] — X is
called contractible if it is homotopic to a constant path.

Definition A.37 (Simple connectedness). A metric space is said to be simply connected if
every closed path v: [a,b] — X in X is contractible.
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Appendix B

Preliminaries from calculus

B.1 Differentiability

Definition B.1 (Real differentiability). Let m,n € N, and let f: U — R™ be a function defined
on a subset U C R™. A linear map L: R® — R™ is said to be a differential of f at p, € U if

f(p) = f(po) + L(p — po) + E(p — po)

where the error term E is small near p, in the sense that

lim [E(p —po)l ~0

p=ro p—pol

We say that f is differentiable at p, if such a linear map L exists.
It is easy to check that the differential L of f at p, is unique if p, is an interior point of U;
we then denote it by L = df(p,).

Lemma B.2 (Differentiability implies continuity). If a function f: U — R™ defined on a subset
U C R™ is differentiable at p, € U, then it is continuous at p;.

Proof. .. O

Lemma B.3 (Jacobian matrix of the differential). If a function f: U — R™ defined on a subset
U C R"™ is differentiable at an interior point py of U, then it has all first order partial derivatives
at py, and the matriz representation of the differential df(py) in the standard bases of R™ and
R™ s

of 2]
TQ(PO) %(Po)
dfp)=| o eRm,
oz (Po) - . (Po)
where fi,..., f,,: U — R denote component functions of f.
Proof. .. O

Lemma B.4 (Vanishing partial derivatives implies locally constant). Suppose that f: U — R™
is a function defined on an open and connected subset U C R™ of R™ whose first order partial
derivatives exist and are zero at all points of U. Then f is a constant function.

Proof. .. O
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B.2 Riemann integral

For the purposes of this course, it suffices to know the Riemann integral. (Those who already
know Lebesgue integration theory can substitute that more general notion of integral every-
where.)

Definition B.5 (Riemann integral). ..

Lemma B.6 (Riemann integrability of continuous functions). Any continuous function f: [a,b] —
R is Riemann integrable on [a,b].

Proof. See MIS-C1541 Metric Spaces. O

B.3 Trigonometry
Lemma B.7 (Trigonometric angle sum identities). Let «, 8 € R. Then we have

cos(a+ ) = cos(a) cos(f) — sin(«a) sin(f)
sin(a 4+ ) = cos(«) sin(B) + sin(a) cos(f).

Proof. .. O

B.4 Supremum, infimum, limit superior, and limit inferior

Definition B.8 (Supremum). The supremum, or the least upper bound, of a set A C R is
the smallest real number s such that a < s for all @ € A, and is denoted by s = sup A.

By the completeness axiom of real numbers, every nonempty set (A # @) of real numbers
which is bounded from above (for some u € R we have a < u for all a € A) has a supremum
sup A € R. We adopt the notational conventions that sup () = —oco, and that sup A = +oo if A
is not bounded from above.

For convenience, we also adopt some flexibility in the notation: for example the supremum
of values of a real-valued function on a set D is denoted by

sup f(z) = sup{f(z)|z € D}
xeD

and the supremum of values in the tail of a real-number sequence (z,,) starting from index m is
denoted by

sup z,, := sup{z, | m>n}.
n>m

Definition B.9 (Infimum). The infimum, or the greatest lower bound, of a set A C R is
the greatest real number 4 such that a > i for all @ € A, and is denoted by i = inf A.

By the completeness axiom of real numbers, every nonempty set (A # 0) of real numbers
which is bounded from below (for some ¢ € R we have a > ¢ for all « € A) has an infimum
inf A € R. We adopt the notational conventions that inf() = +oo, and that inf A = —oo if A is
not bounded from below.

For convenience, we also adopt some flexibility in the notation for infimums of function values
or sequence values, similarly as with supremums.

43



Definition B.10 (Limit superior). Let (z,,),cy be a sequence of real numbers. Then the limit
superior of the sequence is defined as

limsupz, := lim (sup mn>
n—o00 m=00 \ n>m

With the following conventions, the limit superior of a sequence always exists as either a real
number or one of the symbols +00. If the sequence is not bounded from above, then by conven-

tions regarding the supremum, we have sup, . x, = +oo for every m, so we correspondingly

set limsup, , _x, = +oo. Otherwise the sequence (supnzm T, )men 18 a decreasing sequence

of real numbers, so either it is bounded from below and converges to lim,, ,.. (sup, ., =,) =

inf,,cy (sup,,., x,) € R, oritis not bounded from below and we set limsup, , __x, = inf, o (sup, ., x,)=
—00.

Definition B.11 (Limit inferior). Let (z,,)
inferior of the sequence is defined as

nen be a sequence of real numbers. Then the limit

liminfe, := lim ( inf .’L‘n)
n—oo m—oo \ n>m
With the following conventions, the limit inferior of a sequence always exists as either a real
number or one of the symbols +oo. If the sequence is not bounded from below, then by con-
ventions regarding the infimum, we have inf, .,, z, = —oo for every m, so we correspondingly
set liminf, , x, = —oo. Otherwise the sequence (inf,~,, ,)mey is an increasing sequence
of real numbers, so either it is bounded from above and converges to lim,, , . (inf, -, z,) =
sup,, .y, (inf, -, x,) € R, orit is not bounded from above and we set lim inf,,_,  x, = sup,, , (inf, ., =,)=
+00.

Lemma B.12 (Limit with limsup and liminf). Let (x,,),cy be a sequence of real numbers, and
let x € R. Then the following are equivalent:

o The limit lim,,_, _ z,, exists and equals x.

=x and liminf, , _z, ==.

e We have both lim sup

n—00 In

(With the usual conventions of +00 as possible limits of real-number sequences, the above
equivalence of conditions also extends to the cases x = +00.)

Proof. .. O
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