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This document is a skeleton of the theoretical content of the Fall 2024 course MS-C1300
Complex Analysis at Aalto University. The skeleton includes statements of results and their
logical interdependencies, but no proofs, no examples, and no visualizations.

Instead, the hand-written lecture notes on the course home page correspond to the contents
of the lectures. They include discussions of examples and informal ideas as well as the main
theorems and their proofs. This theory skeleton is meant to complement the lectures as an
organizational document: to indicate the flow of the theory development, and to clarify the main
goals of the course and the purposes of the intermediate results.

An attempt is made to provide references to corresponding parts of the textbook: An Intro-
duction to Complex Function Theory (Undergraduate Texts in Mathematics) by Bruce Palka.

This skeleton is work in progress. It is guaranteed to contain mistakes, the number and
severity of which will be reduced with updates during the course. Please inform the lecturer
Kalle Kytölä of errors that you notice!
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Chapter 1

The complex number system

1.1 The field of complex numbers
Definition 1.1 (Complex numbers and their arithmetic operations [Palka1991, Sec. I.1.1]). The
set of complex numbers is ℂ = ℝ × ℝ, i.e., the set of pairs (𝑥, 𝑦) of real numbers 𝑥, 𝑦 ∈ ℝ.

The operations of addition and multiplication on ℂ are defined by the formulas

(𝑥1, 𝑦2) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2)
(𝑥1, 𝑦1) ⋅ (𝑥2, 𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑦1𝑥2).

Denote 0 = (0, 0) ∈ ℂ and 1 = (1, 0) ∈ ℂ.
For 𝑧 = (𝑥, 𝑦) ∈ ℂ, denote −𝑧 = (−𝑥, −𝑦) ∈ ℂ and if 𝑧 ≠ 0 then denote 𝑧−1 = ( 𝑥

𝑥2+𝑦2 , −𝑦
𝑥2+𝑦2 ) ∈

ℂ.
We write a complex number (𝑥, 𝑦) as 𝑥 + 𝔦 𝑦. The compex number 𝔦 = (0, 1) ∈ ℂ is called the

imaginary unit.

Typically used variable names for complex number are 𝑧, 𝑤, 𝜁 ∈ ℂ etc.

Theorem 1.2 (The field of complex numbers [Palka1991, Sec. I.1.1]).
The set ℂ of compex numbers with its operations of addition and multiplication, is a field,

i.e., the following properties hold for all 𝑧, 𝑤, 𝑧1, 𝑧2, 𝑧3 ∈ ℂ:

• 𝑧 + 𝑤 = 𝑤 + 𝑧 (commutativity of addition)

• 𝑧𝑤 = 𝑤𝑧 (commutativity of multiplication)

• 𝑧1 + (𝑧2 + 𝑧3) = (𝑧1 + 𝑧2) + 𝑧3 (associativity of addition)

• 𝑧1(𝑧2𝑧3) = (𝑧1𝑧2)𝑧3 (associativity of multiplication)

• 0 = 0 + 0 𝔦 = (0, 0) ∈ ℂ satisfies 𝑧 + 0 = 𝑧 (neutral element for addition)

• 1 = 1 + 0 𝔦 = (1, 0) ∈ ℂ satisfies 𝑧 ⋅ 1 = 𝑧 (neutral element for multiplication)

• 𝑧 + (−𝑧) = 0 for any 𝑧 ∈ ℂ (opposite element / additive inverse)

• 𝑧 𝑧−1 = 1 for any 𝑧 ∈ ℂ ∖ {0} (multiplicative inverse)

• (𝑧1 + 𝑧2)𝑤 = 𝑧1𝑤 + 𝑧2𝑤 (distributivity).

Proof. Straightforward calculations using the definitions of the operations (Definition 1.1).
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1.2 Conjugate, modulus, and argument
Definition 1.3 (Complex conjugate [Palka1991, Sec. I.1.2]). The complex conjugate of a
complex number 𝑧 = 𝑥 + 𝔦𝑦 (where 𝑥, 𝑦 ∈ ℝ) is the complex number 𝑧 = 𝑥 − 𝔦𝑦.

Lemma 1.4 (Properties of complex conjugate [Palka1991, Sec. I.1.2 (1.1)]). For any 𝑧, 𝑤 ∈ ℂ,
we have

𝑧 = 𝑧, 𝑧 + 𝑤 = 𝑧 + 𝑤, 𝑧𝑤 = 𝑧 𝑤,

ℜ𝔢(𝑧) = 𝑧 + 𝑧
2 , ℑ𝔪(𝑧) = 𝑧 − 𝑧

2𝔦 .

Proof. Direct calculations.

Definition 1.5 (Absolute value (modulus) [Palka1991, Sec. I.1.2]). The absolute value (or
modulus) of a complex number 𝑧 = 𝑥 + 𝔦𝑦 (where 𝑥, 𝑦 ∈ ℝ) is the nonnegative real number
|𝑧| = √𝑥2 + 𝑦2 ≥ 0.

Lemma 1.6 (Properties of absolute value [Palka1991, Sec. I.1.2 (1.2)]). For any 𝑧, 𝑤 ∈ ℂ, we
have

|𝑧|2 = 𝑧 𝑧, |𝑧𝑤| = |𝑧| |𝑤|,

ℜ𝔢(𝑧) ≤ |𝑧|, ℑ𝔪(𝑧) ≤ |𝑧|,

|𝑧 + 𝑤| ≤ |𝑧| + |𝑤|, |𝑧 + 𝑤| ≥ ∣|𝑧| − |𝑤|∣.

Also, if 𝑧 ≠ 0, then

𝑧−1 = 𝑧
|𝑧|2 , ∣𝑤𝑧 ∣ = |𝑤|

|𝑧| .

Proof. Straightforward.

Definition 1.7 (Argument [Palka1991, Sec. I.1.2]). A real number 𝜃 ∈ ℝ is an argument of a
complex number 𝑧 ∈ ℂ if

𝑧 = |𝑧| ( cos(𝜃) + 𝔦 sin(𝜃)).

(Note/warning: For a nonzero complex number 𝑧, it is convenient to denote 𝜃 = arg(𝑧), but
this is an abuse of notation, the argumentis defined only modulo addition of integer multiples of
2𝜋.)

The principal argument of a nonzero complex number 𝑧 ∈ ℂ is its unique argument on the
interval (−𝜋, 𝜋], and it is denoted by Arg(𝑧).
Lemma 1.8 (Discontinuity of the principal argument). The principal argument Arg ∶ ℂ ∖ {0} →
(−𝜋, 𝜋] is continuous on the subset ℂ ∖ (−∞, 0], but it is discontinuous on the negative real axis
(−∞, 0].
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1.3 The polar form
Definition 1.9 (Complex exponential function). We define the complex exponential func-
tion exp ∶ ℂ → ℂ by

exp(𝑥 + 𝔦𝑦) = 𝑒𝑥 ( cos(𝑦) + 𝔦 sin(𝑦)) for 𝑥, 𝑦 ∈ ℝ,

where 𝑒𝑥 is the usual real exponential. We also use the notation 𝑒𝑧 = exp(𝑧) for complex
exponentials.

The exponential with purely imaginary argument takes the form of Euler’s formula

𝑒𝔦𝜃 = cos(𝜃) + 𝔦 sin(𝜃) for 𝜃 ∈ ℝ.

Lemma 1.10 (Properties of the complex exponential). For any 𝑧, 𝑤 ∈ ℂ we have

𝑒𝑧+𝑤 = 𝑒𝑧 𝑒𝑤.

For any 𝑧 ∈ ℂ we have

𝑒𝑧 = 𝑒𝑧, |𝑒𝑧| = 𝑒ℜ𝔢(𝑧), arg(𝑒𝑧) = ℑ𝔪(𝑧) (mod 2𝜋).

For 𝑧, 𝑤 ∈ ℂ we have 𝑒𝑧 = 𝑒𝑤 if and only if 𝑧 = 𝑤 + 2𝜋𝔦𝑛 for some 𝑛 ∈ ℤ.

Proof. …

Lemma 1.11 (Polar form). Every complex number 𝑧 ∈ ℂ can be written in the polar form

𝑧 = 𝑟 𝑒𝔦𝜃 where 𝑟 ≥ 0 and 𝜃 ∈ ℝ.

The modulus of 𝑧 is the number 𝑟 = |𝑧| above. If 𝑧 ≠ 0, then 𝜃 above is a choice of the argument
of 𝑧, i.e., 𝜃 = Arg(𝑧) + 2𝜋𝑚 for some 𝑚 ∈ ℤ.

Proof. …

Lemma 1.12 (Multiplication in polar form [Palka1991, Sec. I.1.2 (1.6)]). For any 𝑧, 𝑤 ∈ ℂ,
written in polar form as 𝑧 = 𝑟𝑒𝔦𝜃 and 𝑤 = 𝑟′𝑒𝔦𝜃′ , the product can be written in polar form as

𝑧𝑤 = 𝑟𝑟′ 𝑒𝔦(𝜃+𝜃′).

In other words,

|𝑧𝑤| = |𝑧| |𝑤| and arg(𝑧𝑤) = arg(𝑧) + arg(𝑤) (mod 2𝜋).

Proof. …

Theorem 1.13 (De Moivre’s formula [Palka1991, Sec. I.1.2 (1.7)]). For any 𝜃 ∈ ℝ and 𝑛 ∈ ℤ,
we have

( cos(𝜃) + 𝔦 sin(𝜃))𝑛 = cos(𝑛𝜃) + 𝔦 sin(𝑛𝜃).

Proof. Induction using Lemma 1.12.
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Lemma 1.14 (Roots of unity). For any 𝑛 ∈ ℕ, the solutions 𝑧 ∈ ℂ to the equation

𝑧𝑛 = 1

are the 𝑛 distinct complex numbers

𝑧𝑗 = 𝑒𝔦2𝜋𝑗/𝑛 = cos (2𝜋𝑗
𝑛 ) + 𝔦 sin (2𝜋𝑗

𝑛 ) where 𝑗 = 0, 1, … , 𝑛 − 1.

These solutions are called the (complex) 𝑛th roots of unity.
In particular, we have the polynomial factorization

𝑧𝑛 − 1 =
𝑛−1
∏
𝑗=0

(𝑧 − 𝑒𝔦2𝜋𝑗/𝑛).

Proof. …

1.4 Functions of a complex variable
1.4.1 Polynomials and rational functions
Definition 1.15 (Polynomial). Polynomial functions are functions 𝑝 ∶ ℂ → ℂ of the form

𝑝(𝑧) = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0

where 𝑎0, 𝑎1, … , 𝑎𝑛−1, 𝑎𝑛 ∈ ℂ are coefficients.

Definition 1.16 (Rational function). Rational functions are functions 𝑓 ∶ 𝐷 → ℂ which can
be written as ratios 𝑓(𝑧) = 𝑝(𝑧)

𝑞(𝑧) of two polynomials 𝑝, 𝑞 ∶ ℂ → ℂ on a domain 𝐷 ⊂ ℂ where the
denominator polynomial 𝑞 has no zeroes.

1.4.2 Exponentials and branches of logarithms
Definition 1.17 (Principal complex logarithm). The principal logarithm is the function

Log ∶ ℂ ∖ {0} → ℂ
Log(𝑧) = log |𝑧| + 𝔦 Arg(𝑧),

where log |𝑧| is the usual natural logarithm of the positive real number |𝑧| > 0 and Arg(𝑧) ∈
(−𝜋, 𝜋] is the principal argument of the nonzero complex number 𝑧 ≠ 0.

(Directly from this definition one sees that for 𝑧 ∈ ℂ ∖ {0} we have 𝑒Log(𝑧) = 𝑧. All complex
solutions 𝑤 to 𝑒𝑤 = 𝑧 are of the form 𝑤 = Log(𝑧) + 2𝜋𝔦𝑛 where 𝑛 ∈ ℤ.)

Definition 1.18 (Branches of complex logarithm). A branch of the logarithm is a continuous
function ℓ ∶ 𝑈 → ℂ on an open set 𝑈 ⊂ ℂ such that

𝑒ℓ(𝑧) = 𝑧 for all 𝑧 ∈ 𝑈.

For example, the principal logarithm Log restricted to the open set ℂ ∖ (−∞, 0] is called
the principal branch of the logarithm. Note that this principal branch cannot be extended
continuously to the negative real axis.

(Note that since 𝑒𝑤 ≠ 0 for all 𝑤 ∈ ℂ, any branch of the logarithm must exclude the origin
from its domain of definition, 0 ∉ 𝑈 .)
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1.4.3 Complex power functions
Definition 1.19 (Principal complex power function). Let 𝛼 ∈ ℂ. The principal (complex)
𝛼th power function is the function ℂ ∖ {0} → ℂ given by

𝑧 ↦ 𝑧𝛼 ∶= 𝑒𝛼 Log(𝑧).

(Note: Integer powers have more direct natural definitions. For 𝑛 ∈ ℕ we simply define
𝑧𝑛 by recursive multiplication and the function 𝑧 ↦ 𝑧𝑛 is continuous and defined in all of ℂ
and coincides with the principal power function with 𝛼 = 𝑛 on ℂ ∖ {0}. We also define 𝑧−𝑛 by
recursive multiplication of the inverse 𝑧−1 of 𝑧, and the function 𝑧 ↦ 𝑧−𝑛 is continuous on ℂ∖{0}
and coincides with the principal power function with 𝛼 = −𝑛. For 𝑛 = 0 we define 𝑧0 = 1 for
any 𝑧 ∈ ℂ, and this coincides with the principal power function with 𝛼 = 0 on ℂ ∖ {0}.)

Given a branch ℓ ∶ 𝑈 → ℂ of logarithm on an open set 𝑈 ⊂ ℂ, we obtain a branch of the 𝛼th
power function on 𝑈 by the formula 𝑧 ↦ 𝑒𝛼ℓ(𝑧). Using the same branch of the logarithm for the
power functions, we have 𝑧𝛼𝑧𝛽 = 𝑧𝛼+𝛽.

1.4.4 Branches of 𝑛th roots
Definition 1.20 (Principal 𝑛th root function). Let 𝑛 ∈ ℕ. The principal (complex) 𝑛th
root of 𝑧 ∈ ℂ ∖ {0} is

𝑛√𝑧 ∶= 𝑧1/𝑛 = 𝑒 1
𝑛 Log(𝑧).

(It follows directly from the definition and the properties of complex exponential that ( 𝑛√𝑧)𝑛 =
𝑧. All complex solutions 𝑤 to 𝑤𝑛 = 𝑧 are of the form 𝑤 = 𝜁 𝑛√𝑧 where 𝜁 = 𝑒2𝜋𝔦𝑗/𝑛 with
𝑗 = 0, 1, … , 𝑛 − 1, i.e., 𝜁 is one of the 𝑛 complex 𝑛th roots of unity.)
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Chapter 2

Complex derivatives and analytic
functions

2.1 Real linear maps versus complex linear maps
The right abstract way of understanding the differential of a function is as a linear approximation
to a function locally. The key difference between real analysis and complex analysis is whether
one uses real linear maps or complex linear maps.

Definition 2.1 (Linear map). Let 𝕂 be a field (for example 𝕂 = ℝ or 𝕂 = ℂ), and let 𝑉 and 𝑊
be vector spaces over 𝕂. A function 𝐿 ∶ 𝑉 → 𝑊 is said to be 𝕂-linear if

𝐿(𝑣1 + 𝑣2) = 𝐿(𝑣1) + 𝐿(𝑣2) for all 𝑣1, 𝑣2 ∈ 𝑉 ,
𝐿(𝑐𝑣) = 𝑐 𝐿(𝑣) for all 𝑣 ∈ 𝑉 , 𝑐 ∈ 𝕂.

Such a function 𝐿 is also called a 𝕂-linear map (or a 𝕂-linear transformation) between the
spaces 𝑉 and 𝑊 .

The complex plane ℂ ≅ ℝ2 can be seen either as a 2-dimensional real vector space or as a
1-dimensional complex vector space. In particular, it makes sense to talk about both ℝ-linear
maps ℂ → ℂ and ℂ-linear maps ℂ → ℂ.

More generally, any complex vector space can be seen as a real vector space (of twice the
same dimension), and any complex linear map becomes a real linear map. The converse is not
true! Let us elaborate on this in a simple example which will soon be seen to pertain to the
difference of complex differentiability and real differentiability.

Remark: Identifying ℂ = ℝ2 (and choosing basis vectors 1, 𝔦 ∈ ℂ for ℂ seen as a 2-dimensional
vector space), we see that an ℝ-linear map 𝐿 ∶ ℂ → ℂ can be encoded in a 2 × 2 matrix with real
entries,

𝑀 = [ 𝑎 𝑏
𝑐 𝑑 ] ∈ ℝ2×2

in such a way that

𝐿(𝑥 + 𝔦𝑦) = (𝑎𝑥 + 𝑏𝑦) + 𝔦(𝑐𝑥 + 𝑑𝑦).
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Remark: A ℂ-linear map 𝐿 ∶ ℂ → ℂ can be encoded in a single complex number 𝜆 ∈ ℂ (or
more pedantically, in a 1 × 1 matrix [𝜆] ∈ ℂ1×1), in such a way that

𝐿𝑧 = 𝜆𝑧.
We can write 𝜆 = 𝛼 + 𝔦𝛽, with 𝛼 = ℜ𝔢(𝜆), 𝛽 = ℑ𝔪(𝜆) ∈ ℝ. We can also write 𝑧 = 𝑥 + 𝔦𝑦 and
obtain the expression

𝐿(𝑥 + 𝔦𝑦) = (𝛼 + 𝔦𝛽)(𝑥 + 𝔦𝑦) = (𝛼𝑥 − 𝛽𝑦) + 𝔦(𝛽𝑥 + 𝛼𝑦).
In other words, seen as a real-linear map, the complex multiplication by 𝜆 corresponds to the
matrix

𝑀 = [ 𝛼 −𝛽
𝛽 𝛼 ] .

This clearly shows that not every real-linear map ℂ → ℂ is complex linear. It also gives an explicit
set of equations for the entries of the matrix of a real-linear map characterizing complex-linearity,
which turn out to be very closely related to the Cauchy-Riemann equations.
Lemma 2.2 (Complex linear versus real linear maps of ℂ). Let 𝐿 ∶ ℂ → ℂ be a ℝ-linear map

represented in the basis 1, 𝔦 by the matrix 𝑀 = [ 𝑎 𝑏
𝑐 𝑑 ] ∈ ℝ2×2. Then the following are

equivalent:
• 𝐿 is ℂ-linear;

• 𝑏 = −𝑐 and 𝑎 = 𝑑.
Proof. Clear from the above discussion.

2.2 Complex derivative
Definition 2.3 (Complex derivative [Palka1991, Sec. III.1.1]). Let 𝑓 ∶ 𝐴 → ℂ be a complex-
valued function defined on a subset 𝐴 ⊂ ℂ of the complex plane, and let 𝑧0 ∈ 𝐴 be an interior
point of the subset.

The 𝑓 is said to have a complex derivative

𝑓 ′(𝑧0) ∶= lim
𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

at 𝑧0, if the limit on the right hand side above exists.
(In complex analysis we often drop the epithet “complex” above, and simply call 𝑓 ′(𝑧0) the

derivative of 𝑓 at 𝑧0.)
Lemma 2.4 (Local linear approximation). If a function 𝑓 ∶ 𝐴 → ℂ has complex derivative
𝑓 ′(𝑧0) = 𝜆 ∈ ℂ at a point 𝑧0 ∈ 𝐴, then we can write a linear approximation

𝑓(𝑧) = 𝑓(𝑧0) + (𝑧 − 𝑧0) 𝜆 + 𝜖(𝑧),

where the error term 𝜖 is small near 𝑧0 in the sense that lim𝑧→𝑧0
𝜖(𝑧)

|𝑧−𝑧0| = 0.

Proof. …

Lemma 2.5 (Complex differentiability implies continuity [Palka1991, Sec. III.1.1]). If a function
𝑓 ∶ 𝐴 → ℂ has a complex derivative 𝑓 ′(𝑧0) at a point 𝑧0 ∈ 𝐴, then it is continuous at 𝑧0.
Proof. …
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2.3 Cauchy-Riemann equations
Lemma 2.6 (Complex derivative implies differentiability). Let 𝑓 ∶ 𝐴 → ℂ be a function defined
on a set 𝐴 ⊂ ℂ, and let 𝑢∶ 𝐴 → ℝ and 𝑣 ∶ 𝐴 → ℝ be its real and imaginary parts, viewed as
real-valued functions of two real variables, 𝑢(𝑥, 𝑦) = ℜ𝔢(𝑓(𝑥+𝔦𝑦)) and 𝑣(𝑥, 𝑦) = ℑ𝔪(𝑓(𝑥+𝔦𝑦)), so
that 𝑓 = 𝑢 + 𝔦 𝑣. If 𝑓 has a complex derivative 𝑓 ′(𝑧0) at an interior point 𝑧0 = 𝑥0 + 𝔦𝑦0 ∈ 𝐴, then
𝑢 and 𝑣 are differentiable at (𝑥0, 𝑦0) and their partial derivatives satisfy the Cauchy-Riemann
equations

𝜕𝑢
𝜕𝑥(𝑥0, 𝑦0) = 𝜕𝑣

𝜕𝑦 (𝑥0, 𝑦0) and 𝜕𝑢
𝜕𝑦 (𝑥0, 𝑦0) = − 𝜕𝑣

𝜕𝑥(𝑥0, 𝑦0).

(These equations are equivalent to the differential d𝑓(𝑥0, 𝑦0) ∶ ℝ2 → ℝ2 being ℂ-linear when
we identify ℝ2 = ℂ.)

We can then write the derivative at 𝑧0 in any of the following ways:

𝑓 ′(𝑧0) = 𝜕𝑢
𝜕𝑥(𝑥0, 𝑦0) + 𝔦 𝜕𝑣

𝜕𝑥(𝑥0, 𝑦0) = 𝜕𝑣
𝜕𝑦 (𝑥0, 𝑦0) − 𝔦 𝜕𝑢

𝜕𝑦 (𝑥0, 𝑦0)

= 𝜕𝑢
𝜕𝑥(𝑥0, 𝑦0) − 𝔦 𝜕𝑢

𝜕𝑦 (𝑥0, 𝑦0) = 𝜕𝑣
𝜕𝑦 (𝑥0, 𝑦0) + 𝔦 𝜕𝑣

𝜕𝑥(𝑥0, 𝑦0).

Proof. …

2.3.1 Differentiation rules
Lemma 2.7 (Linearity of the derivative [Palka1991, Sec. III.1.2 (3.4)]). If two functions 𝑓, 𝑔 ∶ 𝐴 →
ℂ have complex derivatives 𝑓 ′(𝑧0), 𝑔′(𝑧0) at a point 𝑧0 ∈ 𝐴, then the sum function 𝑓 + 𝑔 has a
complex derivative at 𝑧0 given by

(𝑓 + 𝑔)′(𝑧0) = 𝑓 ′(𝑧0) + 𝑔′(𝑧0).
If a function 𝑓 ∶ 𝐴 → ℂ is has a complex derivative 𝑓 ′(𝑧0) at a point 𝑧0 ∈ 𝐴 and 𝑐 ∈ ℂ is a
complex number, then the function 𝑐𝑓 has complex derivative

(𝑐𝑓)′(𝑧0) = 𝑐 𝑓 ′(𝑧0)
at 𝑧0.
Proof. …

Lemma 2.8 (Leibniz rule [Palka1991, Sec. III.1.2 (3.4)]). If two functions 𝑓, 𝑔 ∶ 𝐴 → ℂ have
complex derivatives 𝑓 ′(𝑧0), 𝑔′(𝑧0) at a point 𝑧0 ∈ 𝐴, then the product function 𝑓𝑔 has complex
derivative

(𝑓𝑔)′(𝑧0) = 𝑓 ′(𝑧0) 𝑔(𝑧0) + 𝑓(𝑧0) 𝑔′(𝑧0)
at 𝑧0.
Proof. …

Lemma 2.9 (Derivative of a quotient [Palka1991, Sec. III.1.2 (3.4)]). If two functions 𝑓, 𝑔 ∶ 𝐴 →
ℂ have complex derivatives 𝑓 ′(𝑧0), 𝑔′(𝑧0) at a point 𝑧0 ∈ 𝐴 and 𝑔(𝑧0) ≠ 0, then the quotient
function 𝑓/𝑔 has complex derivative

(𝑓
𝑔 )

′
(𝑧0) = 𝑓 ′(𝑧0) 𝑔(𝑧0) − 𝑓(𝑧0) 𝑔′(𝑧0)

𝑔(𝑧0)2 .

at 𝑧0.
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Proof. …

Lemma 2.10 (Chain rule [Palka1991, Thm III.1.1]). If 𝑓 ∶ 𝐴 → 𝐵 ⊂ ℂ is differentiable at 𝑧0 ∈ 𝐴
and 𝑔 ∶ 𝐵 → ℂ is differentiable at 𝑓(𝑧0) ∈ 𝐵, then the composition 𝑔 ∘ 𝑓 ∶ 𝐴 → ℂ is differentiable
at 𝑧0, with derivative

(𝑔 ∘ 𝑓)′(𝑧0) = 𝑓 ′(𝑧0) 𝑔′(𝑓(𝑧0)).

Proof. …

Lemma 2.11 (Derivative of inverse [Palka1991, Thm III.4.1]). Suppose that 𝑓 is a complex-
valued function defined on a subset of the complex plane, which has a nonzero complex derivative
𝑓 ′(𝑧0) ≠ 0 at a point 𝑧0 and which has a local inverse function near 𝑧0 in the sense that there
are open sets 𝑈, 𝑉 ⊂ ℂ with 𝑧0 ∈ 𝑈 and 𝑓(𝑧0) ∈ 𝑉 , and the restriction of 𝑓 to 𝑈 is continuous
𝑈 → 𝑉 with a continuous inverse. Then the local inverse function 𝑓−1 ∶ 𝑉 → 𝑈 has complex
derivative at 𝑤0 ∶= 𝑓(𝑧0) given by

(𝑓−1)′(𝑤0) = 1
𝑓 ′(𝑧0) .

Proof. …

2.3.2 Analytic functions
Definition 2.12 (Analytic function [Palka1991, Sec. III.1.3]). A function 𝑓 ∶ 𝑈 → ℂ defined on
an open set 𝑈 ⊂ ℂ is said to be analytic (or holomorphic) if it is complex differentiable at
every point 𝑧0 ∈ 𝑈 .

Theorem 2.13 (Cauchy-Riemann equations [Palka1991, Thm III.2.2]). Let 𝑓 ∶ 𝑈 → ℂ be a
function defined on an open set 𝑈 ⊂ ℂ, and let 𝑢∶ 𝑈 → ℝ and 𝑣 ∶ 𝑈 → ℝ be its real and
imaginary parts, viewed as real-valued functions of two real variables,

𝑢(𝑥, 𝑦) = ℜ𝔢(𝑓(𝑥 + 𝔦𝑦)) and 𝑣(𝑥, 𝑦) = ℑ𝔪(𝑓(𝑥 + 𝔦𝑦))

so that 𝑓 = 𝑢 + 𝔦 𝑣.
Then the following are equivalent:

• The functions 𝑢 and 𝑣 are differentiable at every point in 𝑈 and their partial derivatives
satisfy the Cauchy-Riemann equations

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 and 𝜕𝑢
𝜕𝑦 = − 𝜕𝑣

𝜕𝑥
in 𝑈 .

• The function 𝑓 is analytic.

Proof. …

Lemma 2.14 (Analytic functions are continuous). Every function 𝑓 ∶ 𝑈 → ℂ which is analytic
on an open set 𝑈 ⊂ ℂ is also continuous on 𝑈 .

Proof. …
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Lemma 2.15 (Polynomials are analytic). Every polynomial function 𝑝 ∶ ℂ → ℂ is analytic.

Proof. …

Lemma 2.16 (Rational functions are analytic). Every rational function 𝑓 ∶ 𝑈 → ℂ is analytic
on its domain of definition 𝑈 ⊂ ℂ.

Proof. …

Lemma 2.17 (The complex exponential is analytic). The complex exponential function exp ∶ ℂ →
ℂ is analytic. Its (complex) derivative at 𝑧 ∈ ℂ is exp′(𝑧) = exp(𝑧).
Proof. …

Lemma 2.18 (Branches of 𝑛th root functions are analytic). The principal branch of the 𝑛th
root function 𝑧 ↦ 𝑛√𝑧 is analytic on its domain ℂ ∖ (−∞, 0].

(Different branch choices can be made to obtain analyticity on other domains, but for 𝑛 ≥ 2,
no branch of 𝑛√𝑧 can be made analytic on all of ℂ.)

Proof. …

2.3.3 Consequences of Cauchy-Riemann equations
Lemma 2.19 (Analytic functions of vanishing derivative). Suppose that 𝑓 ∶ 𝐷 → ℂ is a analytic
function on a connected open subset 𝐷 ⊂ ℂ of the complex plane such that 𝑓 ′(𝑧) = 0 for all
𝑧 ∈ 𝐷. Then 𝑓 is a constant function.

Proof. …

Theorem 2.20 (Criteria for constantness of a analytic function). Suppose that 𝑓 ∶ 𝐷 → ℂ is a
analytic function on a connected open subset 𝐷 ⊂ ℂ of the complex plane. If any of the functions
𝑢 = ℜ𝔢(𝑓) ∶ 𝐷 → ℝ, 𝑣 = ℑ𝔪(𝑓) ∶ 𝐷 → ℝ, |𝑓| ∶ 𝐷 → ℝ, is constant on 𝐷, then 𝑓 is itself a constant
function.

Proof. …

Lemma 2.21 (Harmonicity of real and imaginary parts). Suppose that 𝑓 ∶ 𝑈 → ℂ is a analytic
function on an open subset 𝑈 ⊂ ℂ of the complex plane. Let 𝑢, 𝑣 ∶ 𝑈 → ℝ denote the real and
imaginary parts of 𝑓 defined by 𝑢(𝑥, 𝑦) = ℜ𝔢(𝑓(𝑥 + 𝔦𝑦)) and 𝑣(𝑥, 𝑦) = ℑ𝔪(𝑓(𝑥 + 𝔦𝑦)). Assume
moreover that that 𝑢 and 𝑣 are twice continuously differentiable (later it will be shown that this
assumption holds automatically by the analyticity of 𝑓). Then 𝑢 and 𝑣 are harmonic functions,
i.e., they satisfy

△𝑢 = 0 and △𝑣 = 0, where △ = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 .

Proof. …

Definition 2.22 (Harmonic conjugate). Suppose that 𝑢∶ 𝑈 → ℝ is harmonic function on an
open subset 𝑈 ⊂ ℝ2, i.e., a twice continuously differentiable function satisfying 𝜕2

𝜕𝑥2 𝑢 + 𝜕2
𝜕𝑦2 𝑢 = 0

on 𝑈 . A function 𝑣 ∶ 𝑈 → ℝ is called a harmonic conjugate of 𝑢 if the function

𝑥 + 𝔦𝑦 ↦ 𝑢(𝑥, 𝑦) + 𝔦 𝑣(𝑥, 𝑦)

is analytic on 𝑈 .
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Lemma 2.23 (Local existence of harmonic conjugates). Let 𝐵 = ℬ(𝑧0; 𝑟) ⊂ ℂ be a disk in the
complex plane. Suppose that 𝑢∶ 𝐵 → ℝ is harmonic function on 𝐵. Then a harmonic conjugate
𝑣 ∶ 𝐵 → ℝ of 𝑢 in the disk 𝐵 exists and is unique up to an additive constant.

Proof. …
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Chapter 3

Contour integration

3.1 Complex-valued integrals
Definition 3.1 (Integral of a complex-valued function). Let 𝑓 ∶ [𝑎, 𝑏] → ℂ be a complex-valued
continuous function defined on a closed interval [𝑎, 𝑏] ⊂ ℝ. We define the integral of 𝑓 as

∫
𝑏

𝑎
𝑓(𝑡) d𝑡 = ∫

𝑏

𝑎
ℜ𝔢(𝑓(𝑡)) d𝑡 + 𝔦 ∫

𝑏

𝑎
ℑ𝔪(𝑓(𝑡)) d𝑡.

(Note that on the right hand side we have just Riemann integrals of the continuous real-valued
functions 𝑡 ↦ ℜ𝔢(𝑓(𝑡)) and 𝑡 ↦ ℑ𝔪(𝑓(𝑡)).)

Lemma 3.2 (Complex linearity of complex-valued integrals). If 𝑓, 𝑔 ∶ [𝑎, 𝑏] → ℂ are complex-
valued continuous functions defined on a closed interval [𝑎, 𝑏] ⊂ ℝ, then the integral of their sum
is

∫
𝑏

𝑎
(𝑓(𝑡) + 𝑔(𝑡)) d𝑡 = ∫

𝑏

𝑎
𝑓(𝑡) d𝑡 + ∫

𝑏

𝑎
𝑔(𝑡) d𝑡.

If 𝑓 ∶ [𝑎, 𝑏] → ℂ is a complex-valued continuous function defined on a closed interval [𝑎, 𝑏] ⊂ ℝ,
and 𝜆 ∈ ℂ is a complex number, then the integral of the scalar multiple of 𝑓 is

∫
𝑏

𝑎
𝜆 𝑓(𝑡) d𝑡 = 𝜆 ∫

𝑏

𝑎
𝑓(𝑡) d𝑡.

Proof. …

Lemma 3.3 (Fundamental theorem of calculus for complex-valued integrals). Suppose that
𝑓 ∶ [𝑎, 𝑏] → ℂ is a continuously differentiable complex-valued function on a closed interval [𝑎, 𝑏] ⊂
ℝ. Denote its derivative by ̇𝑓(𝑡) = d

d𝑡 𝑓(𝑡). Then for the integral of the derivative of 𝑓 we have

∫
𝑏

𝑎
̇𝑓(𝑡) d𝑡 = 𝑓(𝑏) − 𝑓(𝑎).

Proof. …
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3.2 Paths in the complex plane
Definition 3.4 (Path [Palka1991, Sec. IV.1.1]). A path in the complex plane is a continuous
function 𝛾 ∶ [𝑎, 𝑏] → ℂ from a closed interval [𝑎, 𝑏] ⊂ ℝ to ℂ.

When 𝐴 ⊂ ℂ is a subset of the complex plane, we say that 𝛾 is a path in 𝐴 if 𝛾(𝑡) ∈ 𝐴 for all
𝑡 ∈ [𝑎, 𝑏].

If the starting point and the end point of the path 𝛾 are the same, 𝛾(𝑎) = 𝛾(𝑏), then we say
that 𝛾 is a closed path.

We sometimes want to disregard the parametrization, and view a path 𝛾 ∶ [𝑎, 𝑏] → ℂ as a
subset of the complex plane. This subset is the range {𝛾(𝑡) ∣ 𝑡 ∈ [𝑎, 𝑏]} ⊂ ℂ of the parametrizing
function, but with a slight abuse of notation we often just write 𝛾 ⊂ ℂ also for this subset.

(Note that the subset 𝛾 ⊂ ℂ is compact, by continuity of 𝛾 ∶ [𝑎, 𝑏] → ℂ and compactness of
[𝑎, 𝑏].)
Definition 3.5 (Smooth path [Palka1991, Sec. IV.1.2]). A path 𝛾 ∶ [𝑎, 𝑏] → ℂ is smooth if it is
continuously differentiable, i.e., the derivative

̇𝛾(𝑡) = d
d𝑡𝛾(𝑡)

with respect to the parameter 𝑡 exists for all 𝑡 ∈ [𝑎, 𝑏] (one-sided derivatives at the interval end
points 𝑎 and 𝑏), and defines a continuous complex-valued function 𝑡 ↦ ̇𝛾(𝑡) on [𝑎, 𝑏].
Definition 3.6 (Contour / piecewise smooth path [Palka1991, Sec. IV.1.2]). A contour (also
called a piecewise smooth path) is a continuous function 𝛾 ∶ [𝑎, 𝑏] → ℂ such that for some
finite subdivision 𝑎 = 𝑡0 < 𝑡1 < … < 𝑡𝑛 = 𝑏, the restrictions 𝛾|[𝑡𝑗−1,𝑡𝑗] to the subintervals
[𝑡𝑗−1, 𝑡𝑗] ⊂ [𝑎, 𝑏] are smooth paths for each 𝑗 = 1, … , 𝑛.

If the starting point and the end point of the contour 𝛾 are the same, 𝛾(𝑎) = 𝛾(𝑏), then we
say that 𝛾 is a closed contour.

Definition 3.7 (Reverse path [Palka1991, Sec. IV.1.4]). Given a path 𝛾 ∶ [𝑎, 𝑏] → ℂ, the reverse
path ⃖⃖ ⃖⃖𝛾 ∶ [𝑎, 𝑏] → ℂ is the path defined by

⃖⃖ ⃖⃖𝛾(𝑡) = 𝛾(𝑎 + 𝑏 − 𝑡) for 𝑡 ∈ [𝑎, 𝑏].
Definition 3.8 (Concatenation of paths [Palka1991, Sec. IV.1.4]). Given path 𝛾 ∶ [𝑎, 𝑏] → ℂ and
𝜂 ∶ [𝑐, 𝑑] → ℂ with 𝛾(𝑏) = 𝜂(𝑐) (the starting point of 𝜂 coincides with the end point of 𝛾), the
concatenation of 𝛾 and 𝜂 is the path 𝛾 ⊕ 𝜂 ∶ [𝑎, 𝑏 + 𝑑 − 𝑐] → ℂ defined by

(𝛾 ⊕ 𝜂)(𝑡) = {𝛾(𝑡) for 𝑡 ∈ [𝑎, 𝑏],
𝜂(𝑐 + 𝑡 − 𝑏)) for 𝑡 ∈ [𝑏, 𝑏 + 𝑑 − 𝑐].

(The slightly cumbersome formula in the second case is due to the fact that we need to attach
the two parameter intervals of lengths 𝑏 − 𝑎 and 𝑑 − 𝑐 to each other, and we have, somewhat
arbitrarily, chosen to glue them to form the interval [𝑎, 𝑏 + 𝑑 − 𝑐].)
Definition 3.9 (Reparametrization of paths [Palka1991, Sec. IV.1.5]). Given a path 𝛾 ∶ [𝑎, 𝑏] →
ℂ and a continuous increasing bijection 𝜙∶ [𝑐, 𝑑] → [𝑎, 𝑏], we define the reparametrization of
𝛾 by 𝜙 as the path

𝛾 ∘ 𝜙 ∶ [𝑐, 𝑑] → ℂ
𝑡 ↦ 𝛾(𝜙(𝑡)).

Note that
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• 𝜙−1 ∶ [𝑎, 𝑏] → [𝑐, 𝑑] is also a continuous increasing bijection (a continuous bijection from the
compact [𝑎, 𝑏] is automatically a homeomorphism; see Lemma A.33) and reparametrization
can be undone by rereparametrizing by 𝜙−1;

• If both 𝛾 and the reparametrization function 𝜙 are smooth (continuously differentiable),
then the reparametrized path 𝛾 ∘ 𝜙 is also smooth;

• If both 𝛾 and the reparametrization function 𝜙 are piecewise smooth, then the reparametrized
path 𝛾 ∘ 𝜙 is also piecewise smooth, i.e., a contour.

3.3 Integrals along paths
Definition 3.10 (Contour integral along a smooth path [Palka1991, Sec. IV.2.1]). Let 𝑓 ∶ 𝐴 → ℂ
be a continuous function defined on a subset 𝐴 ⊂ ℂ. Let 𝛾 ∶ [𝑎, 𝑏] → 𝐴 be a smooth path in 𝐴.
We define the integral of 𝑓 along 𝛾 as

∫
𝛾

𝑓(𝑧) 𝑑𝑧 = ∫
𝑏

𝑎
𝑓(𝛾(𝑡)) ̇𝛾(𝑡) d𝑡.

(Here ̇𝛾(𝑡) = d
d𝑡 𝛾(𝑡) denotes the derivative of the smooth path 𝛾 with respect to its parameter

𝑡.)
Sometimes it is appropriate to integrate functions with respect to the arc length in the

following sense.

Definition 3.11 (Arc length integral along a smooth path [Palka1991, Sec. IV.2.1]). Let 𝑓 ∶
𝐴 → ℂ be a continuous function defined on a subset 𝐴 ⊂ ℂ. Let 𝛾 ∶ [𝑎, 𝑏] → 𝐴 be a smooth path
in 𝐴. We define the integral of 𝑓 with respect to the arc length of 𝛾 as

∫
𝛾

𝑓(𝑧) |𝑑𝑧| = ∫
𝑏

𝑎
𝑓(𝛾(𝑡)) | ̇𝛾(𝑡)| d𝑡.

(Here ̇𝛾(𝑡) = d
d𝑡 𝛾(𝑡) ∈ ℂ denotes the derivative of the smooth path 𝛾 with respect to its

parameter 𝑡, and | ̇𝛾(𝑡)| ≥ 0 denotes the absolute value of this derivative.)

In order to extend the definition of contour integrals to piecewise smooth paths, we note that
the definition behaves additively under path concatenation.

Lemma 3.12 (Contour integrals and smooth path concatenation [Palka1991, Lem IV.2.1(iv)]).
If a smooth path 𝛾 in 𝐴 is a concatenation of smooth paths 𝜂1, … , 𝜂𝑛, and 𝑓 ∶ 𝐴 → ℂ is a
continuous function defined on 𝐴 ⊂ ℂ, then we have

∫
𝛾

𝑓(𝑧) d𝑧 =
𝑛

∑
𝑗=1

∫
𝜂𝑗

𝑓(𝑧) d𝑧

and

∫
𝛾

𝑓(𝑧) |d𝑧| =
𝑛

∑
𝑗=1

∫
𝜂𝑗

𝑓(𝑧) |d𝑧|.

Proof. …
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By virtue of the above, the following gives a well-defined meaning to integrals along piecewise
smooth paths.

Definition 3.13 (Contour integral [Palka1991, Sec. IV.2.1]). Let 𝑓 ∶ 𝐴 → ℂ be a continuous
function defined on a subset 𝐴 ⊂ ℂ. Let 𝛾 ∶ [𝑎, 𝑏] → 𝐴 be a piecewise smooth path in 𝐴, which
is a concatenation of smooth paths 𝜂1, … , 𝜂𝑛. We define the integral of 𝑓 along 𝛾 as

∫
𝛾

𝑓(𝑧) 𝑑𝑧 =
𝑛

∑
𝑗=1

∫
𝜂𝑗

𝑓(𝑧) 𝑑𝑧.

Definition 3.14 (Arc-length integral). Let 𝑓 ∶ 𝐴 → ℂ be a continuous function defined on a
subset 𝐴 ⊂ ℂ. Let 𝛾 ∶ [𝑎, 𝑏] → 𝐴 be a piecewise smooth path (i.e., a contour) in 𝐴, which is a
concatenation of smooth paths 𝜂1, … , 𝜂𝑛. We define the integral of 𝑓 with respect to the
arc length of 𝛾 as

∫
𝛾

𝑓(𝑧) |𝑑𝑧| =
𝑛

∑
𝑗=1

∫
𝜂𝑗

𝑓(𝑧) |𝑑𝑧|.

Definition 3.15 (Length of a path or a contour). Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise smooth path
(i.e., a contour) in ℂ. The length ℓ(𝛾) of 𝛾 is defined as

ℓ(𝛾) = ∫
𝛾

|d𝑧|.

Lemma 3.16 (Reparametrization invariance of integrals [Palka1991, Lem IV.2.1(v)]). Let 𝛾
be a piecewise smooth path in 𝐴, and let ̃𝛾 be obtained from 𝛾 by an orientation-preserving
reparametrization. Then for any continuous function 𝑓 ∶ 𝐴 → ℂ we have

∫
𝛾̃

𝑓(𝑧) 𝑑𝑧 = ∫
𝛾

𝑓(𝑧) 𝑑𝑧

and

∫
𝛾̃

𝑓(𝑧) |𝑑𝑧| = ∫
𝛾

𝑓(𝑧) |𝑑𝑧|.

Lemma 3.17 (Contour integrals and path reversal [Palka1991, Lem IV.2.1(iii)]). If 𝑓 ∶ 𝐴 → ℂ
is a continuous function defined on 𝐴 ⊂ ℂ, and 𝛾 is a piecewise path in 𝐴, then for the contour
integral and the arc length integral behave as follows under path reversal: then we have

∫
⃖⃖ ⃖⃖𝛾

𝑓(𝑧) d𝑧 = − ∫
𝛾

𝑓(𝑧) d𝑧

and

∫
⃖⃖ ⃖⃖𝛾

𝑓(𝑧) |d𝑧| = ∫
𝛾

𝑓(𝑧) |d𝑧|

Proof. …

Lemma 3.18 (Linearity of integrals [Palka1991, Lem IV.2.1(i-ii)]).
Let 𝐴 ⊂ ℂ be a subset of the complex plane let and 𝛾 ∶ [𝑎, 𝑏] → 𝐴 be a contour in 𝐴.

16



If 𝑓, 𝑔 ∶ 𝐴 → ℂ are continuous functions defined on 𝐴, then the contour integral and the arc
length integral of their sum are

∫
𝛾

(𝑓(𝑧) + 𝑔(𝑧)) d𝑧 = ∫
𝛾

𝑓(𝑧) d𝑧 + ∫
𝛾

𝑔(𝑧) d𝑧

∫
𝛾

(𝑓(𝑧) + 𝑔(𝑧)) |d𝑧| = ∫
𝛾

𝑓(𝑧) |d𝑧| + ∫
𝛾

𝑔(𝑧) |d𝑧|.

If 𝑓 ∶ 𝐴 → ℂ is a complex-valued continuous function defined on 𝐴, and 𝜆 ∈ ℂ is a complex
number, then the contour integral and the arc length integral of the scalar multiple of 𝑓 are

∫
𝛾

𝜆 𝑓(𝑧) d𝑧 = 𝜆 ∫
𝛾

𝑓(𝑧) d𝑧

∫
𝛾

𝜆 𝑓(𝑧) |d𝑧| = 𝜆 ∫
𝛾

𝑓(𝑧) |d𝑧|.

Proof. …

Lemma 3.19 (Triangle inequality for contour integrals [Palka1991, Lem IV.2.1(vi)]). Let 𝑓 ∶
𝐴 → ℂ be a continuous function defined on 𝐴 ⊂ ℂ, and let 𝛾 be a contour in 𝐴. Then we have

∣∫
𝛾

𝑓(𝑧) d𝑧∣ ≤ ∫
𝛾

|𝑓(𝑧)| |𝑑𝑧|.

Proof. …

Corollary 3.20 (An a priori bound for contour integrals). Let 𝑓 ∶ 𝐴 → ℂ be a continuous
function defined on 𝐴 ⊂ ℂ, and let 𝛾 be a contour in 𝐴. Assume that |𝑓(𝑧)| ≤ 𝑀 for all points
𝑧 on the contour 𝛾. Then we have

∣∫
𝛾

𝑓(𝑧) d𝑧∣ ≤ 𝑀 ℓ(𝛾),

where ℓ(𝛾) = ∫𝛾 |d𝑧| denotes the length of the contour 𝛾.

Proof. …

The following slightly technical auxiliary result will only be used later (for winding number
properties and for Cauchy’s formula for the derivative). But since the result only requires contour
integration, the natural logical place for it is here. Also, strictly speaking, we only need the cases
𝑘 = 1 and 𝑘 = 2 in this lemma; but including general 𝑘 ∈ ℕ gives the quickest route to Cauchy’s
formula for higher order derivatives.
Lemma 3.21 ([Palka1991, Lemma V.1.6]). Let 𝛾 be a contour in ℂ, and let ℎ∶ 𝛾 → ℂ be a
continuous function on the contour (we slightly abuse the notation here to identify the contour
as a subset 𝛾 ⊂ ℂ). Let 𝑘 ∈ ℕ be a positive integer. Define 𝐻 ∶ ℂ ∖ 𝛾 → ℂ by

𝐻(𝑧) = ∫
𝛾

ℎ(𝜁)
(𝜁 − 𝑧)𝑘 d𝜁.

Then 𝐻 is analytic on ℂ ∖ 𝛾, and its derivative at 𝑧 ∈ ℂ ∖ 𝛾 is given by

𝐻′(𝑧) = 𝑘 ∫
𝛾

ℎ(𝜁)
(𝜁 − 𝑧)𝑘+1 d𝜁.

Proof. …
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3.4 Primitives
Definition 3.22 (Primitive of a function [Palka1991, Sec. IV.2.3]). Let 𝑓 ∶ 𝑈 → ℂ be a function
defined on an open subset 𝑈 ⊂ ℂ. A primitive of 𝑓 is a function 𝐹 ∶ 𝑈 → ℂ such that 𝐹 is
analytic (i.e., complex differentiable) on 𝑈 ,

𝐹 ′(𝑧) = 𝑓(𝑧) for all 𝑧 ∈ 𝑈.

Theorem 3.23 (Fundamental theorem of calculus for contour integrals [Palka1991, Thm IV.2.2]).
Suppose that 𝑓 ∶ 𝑈 → ℂ is a continuous function on an open set 𝑈 ⊂ ℂ, and that 𝑓 has a primitive
𝐹 ∶ 𝑈 → ℂ. Then for any contour 𝛾 ∶ [𝑎, 𝑏] → 𝑈 we have

∫
𝛾

𝑓(𝑧) 𝑑𝑧 = 𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑎)).

In particular for any closed contour 𝛾 in 𝑈 , we have

∮
𝛾

𝑓(𝑧) 𝑑𝑧 = 0.

Proof. …

Lemma 3.24 (Existence of primitives for monomials). For 𝑛 ∈ {0, 1, 2, …}, the monomial
function 𝑓(𝑧) = 𝑧𝑛 has a primitive 𝐹(𝑧) = 1

𝑛+1 𝑧𝑛+1 + 𝑐 (with 𝑐 ∈ ℂ arbitrary) in the whole
complex plane ℂ.

For 𝑛 ∈ {−2, −3, −4, …}, the monomial function 𝑓(𝑧) = 𝑧𝑛 has a primitive 𝐹(𝑧) = 1
𝑛+1 𝑧𝑛+1 +

𝑐 (with 𝑐 ∈ ℂ arbitrary) in the punctured complex plane ℂ ∖ {0}.
The monomial function 𝑓(𝑧) = 𝑧−1 = 1

𝑧 does not have a primitive in the punctured complex
plane ℂ ∖ {0}.

Proof. …

Theorem 3.25 (Characterization of the existence of primitives). Let 𝑓 ∶ 𝑈 → ℂ be a continuous
function on an open set 𝑈 ⊂ ℂ. Then the following conditions are equivalent:

(a) 𝑓 has a primitive on 𝑈 ;

(b) the contour integrals ∫𝛾 𝑓(𝑧) d𝑧 of 𝑓 along contours 𝛾 in 𝑈 only depend on the starting point
and the end point of 𝛾;

(c) for all closed contours 𝛾 in 𝑈 we have ∮𝛾 𝑓(𝑧) d𝑧 = 0.

Proof. …
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Chapter 4

Cauchy’s theorem and
consequences

4.1 Convex, star-shaped, and simply connected domains
Definition 4.1 (Line segment). Given two points 𝑧1, 𝑧2 ∈ ℂ in the complex plane, the line
segment between 𝑧1 and 𝑧2 is the path

𝛾 ∶ [0, 1] → ℂ
𝛾(𝑡) = 𝑧1 + 𝑡 (𝑧2 − 𝑧1).

We also often view the line segment as a subset of ℂ rather than a parametrized path, and
we then denote it by

[𝑧1, 𝑧2] = {𝑧1 + 𝑡 (𝑧2 − 𝑧1) ∣ 𝑡 ∈ [0, 1]} ⊂ ℂ.

Definition 4.2 (Convex set). A subset 𝐴 ⊂ ℂ of the complex plane is called convex if for any
two points 𝑧1, 𝑧2 ∈ 𝐴, the line segment between them is contained in the subset,

[𝑧1, 𝑧2] ⊂ 𝐴.

Definition 4.3 (Star-shaped set). A subset 𝐴 ⊂ ℂ of the complex plane is called star-shaped
if there exists a point 𝑧∗ ∈ 𝐴 such that for any 𝑧 ∈ 𝐴, the line segment between 𝑧∗ and 𝑧 is
contained in the subset,

[𝑧∗, 𝑧] ⊂ 𝐴.

Lemma 4.4 (Convex sets are star-shaped). Any nonempty convex set is star-shaped.

Proof. …

Lemma 4.5 (Star-shaped sets are path connected and simply connected). Any star-shaped set
𝑈 ⊂ ℂ is path connected and simply connected.

Proof. …
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4.2 Cauchy’s integral theorem
Lemma 4.6 (Goursat’s lemma [Palka1991, Lem V.1.1]). Suppose that a function 𝑓 ∶ 𝑈 → ℂ is
analytic on an open set 𝑈 ⊂ ℂ. Then for any closed triangle △ ⊂ 𝑈 , we have

∮
𝜕△

𝑓(𝑧) d𝑧 = 0.

Proof. …

Lemma 4.7 (Existence of primitives in star-shaped domains). Every analytic function 𝑓 ∶ 𝑈 → ℂ
on a star-shaped domain 𝑈 ⊂ ℂ has a primitive in 𝑈 .

Proof. …

Theorem 4.8 (Cauchy’s integral theorem for star-shaped domains [Palka1991, Thm V.1.5]).
Suppose that a function 𝑓 ∶ 𝑈 → ℂ is analytic on a star-shaped open subset 𝑈 ⊂ ℂ. Then for any
closed contour 𝛾 in 𝑈 we have

∮
𝛾

𝑓(𝑧) d𝑧 = 0.

Proof. …

Corollary 4.9 (Local Cauchy’s integral theorem [Palka1991, Thm V.5.1]). Suppose that a func-
tion 𝑓 ∶ 𝑈 → ℂ is analytic on a open set 𝑈 ⊂ ℂ. Then for any disk 𝐵 ⊂ 𝑈 contained in the
domain 𝑈 and any closed contour 𝛾 in 𝐵 we have

∮
𝛾

𝑓(𝑧) d𝑧 = 0.

Proof. …

4.3 Cauchy’s integral formula
Theorem 4.10 (Cauchy’s integral formula for star-shaped subdomains [Palka1991, Thm V.2.3]).
Suppose that a function 𝑓 ∶ 𝑈 → ℂ is analytic on an open set 𝑈 ⊂ ℂ, and suppose that 𝛾 is a
closed contour in 𝑈 parametrizing the boundary of a star-shaped Jordan subdomain 𝑉 ⊂ 𝑈 in a
counterclockwise orientation. Then for any point 𝑧 ∈ 𝑉 we have

𝑓(𝑧) = 1
2𝜋𝔦 ∮

𝛾

𝑓(𝜁)
𝜁 − 𝑧 d𝜁.

Proof. …

By far the most commonly used special case of Theorem 4.10 is when the contour 𝛾 is a circle,
encircling a disk whose closure is contained in the domain of the analytic function (recall that
disks are convex and therefore star-shaped).
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Corollary 4.11 (Cauchy’s integral formula for circles). Suppose that a function 𝑓 ∶ 𝑈 → ℂ is
analytic on an open set 𝑈 ⊂ ℂ. Let ℬ(𝑧0; 𝑟) ⊂ 𝑈 be a closed disk contained in 𝑈 . Then for any
point 𝑧 ∈ ℬ(𝑧0; 𝑟) we have

𝑓(𝑧) = 1
2𝜋𝔦 ∮

𝜕ℬ(𝑧0;𝑟)

𝑓(𝜁)
𝜁 − 𝑧 d𝜁

where the circle 𝜕ℬ(𝑧0; 𝑟) is parametrized in the counterclockwise orientation.
Proof. …

4.4 Ideas underlying the generalizations
The generalizations of Cauchy’s integral theorem and Cauchy’s integral formula are based on the
following homotopy invariance property of contour integrals (whose proof we do not do in detail
in this course).
Lemma 4.12 (Homotopy invariance of contour integrals). Let 𝑓 ∶ 𝑈 → ℂ be an analytic function
on an open set 𝑈 ⊂ ℂ, and let 𝛾0 and 𝛾1 be two closed contours in 𝑈 which are homotopic to
each other in 𝑈 . Then we have

∮
𝛾0

𝑓(𝑧) d𝑧 = ∮
𝛾1

𝑓(𝑧) d𝑧.

This readily implies the following generalization of Cauchy’s integral theorem.
Theorem 4.13 (Cauchy’s integral theorem [Palka1991, Thm V.5.1]). Suppose that a function
𝑓 ∶ 𝑈 → ℂ is analytic on a open set 𝑈 ⊂ ℂ. Then for any contractible closed contour 𝛾 we have

∮
𝛾

𝑓(𝑧) d𝑧 = 0.

In particular, if 𝑈 is simply connected, then for any closed contour 𝛾 in 𝑈 we have

∮
𝛾

𝑓(𝑧) d𝑧 = 0,

and the analytic function 𝑓 has a primitive in 𝑈 .
Proof. …

The other ingredient of generalization of Cauchy’s integral formula to arbitrary contours and
points not lying on those contours is the winding number of a contour around a point.
Definition 4.14 (Winding number). Let 𝑧 ∈ ℂ, and let 𝛾 be a closed contour in ℂ ∖ {𝑧}. The
winding number of 𝛾 around 𝑧 is defined as

𝔫𝛾(𝑧) = 1
2𝜋𝔦 ∮

𝛾

d𝜁
𝜁 − 𝑧 .

Lemma 4.15 (Winding number concatenation and reversal). Let 𝛾 and 𝜂 be closed contours in
ℂ both starting and ending at the same point 𝑧0 ∈ ℂ. Then for any point 𝑧 ∈ ℂ ∖ (𝛾 ∪ 𝜂) we have

𝔫𝛾⊕𝜂(𝑧) = 𝔫𝛾(𝑧) + 𝔫𝜂(𝑧)
and for any point 𝑧 ∈ ℂ ∖ 𝛾 we have

𝔫⃖⃖ ⃖⃖𝛾(𝑧) = −𝔫𝛾(𝑧).
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Proof. …

Lemma 4.16 (Winding number properties). Let 𝛾 be a closed contour in ℂ. Then the winding
numbers 𝔫𝛾(𝑧) of points 𝑧 ∈ ℂ ∖ 𝛾 satisfy:

(a) 𝑧 ↦ 𝔫𝛾(𝑧) is constant on each connected component of ℂ ∖ 𝛾;

(b) 𝔫𝛾(𝑧) = 0 for all 𝑧 in the unbounded connected component of ℂ ∖ 𝛾;

(c) If 𝛾 is a Jordan contour and 𝑉 ⊂ ℂ ∖ 𝛾 is the bounded connected component of ℂ ∖ 𝛾, then
either 𝔫𝛾(𝑧) = 1 for all 𝑧 ∈ 𝑉 or 𝔫𝛾(𝑧) = −1 for all 𝑧 ∈ 𝑉 .

Proof. …

Lemma 4.17 (Homotopy invariance of winding numbers). Let 𝑧 ∈ ℂ be a point and let 𝛾 and 𝜂
be two closed contours in ℂ ∖ {𝑧} which are homotopic to each other in ℂ ∖ {𝑧}. Then we have

𝔫𝛾(𝑧) = 𝔫𝜂(𝑧).

Proof. …

The following is then a version of Cauchy’s integral formula which has no restrictions on the
closed contour and no restrictions on the position of the point with respect to the contour, except
that the point must not lie on the contour (for otherwise there is a singularity in the integrand).

Theorem 4.18 (Cauchy’s integral formula [Palka1991, Thm V.2.3]). Suppose that a function
𝑓 ∶ 𝑈 → ℂ is analytic on an open simply connected subset 𝑈 ⊂ ℂ of the complex plane. Then for
any closed contour 𝛾 in 𝑈 we have

∮
𝛾

𝑓(𝜁)
𝜁 − 𝑧 d𝜁 = 2𝜋𝔦 𝔫𝛾(𝑧) 𝑓(𝑧).

Proof. …

4.5 Analyticity of derivatives
Lemma 4.19 (Analyticity of derivatives [Palka1991, Thm V.3.1]). If a function 𝑓 ∶ 𝑈 → ℂ is
analytic on an open set 𝑈 ⊂ ℂ, then its derivative 𝑓 ′ is also analytic on 𝑈 . In particular, then
𝑓 is continuously differentiable, 𝑓 ∈ 𝒞1(𝑈).
Proof. …

Corollary 4.20 (Analyticity of higher derivatives [Palka1991, Cor V.3.2]). If a function 𝑓 ∶ 𝑈 →
ℂ is analytic on an open set 𝑈 ⊂ ℂ, then its derivatives 𝑓 ′, 𝑓″, … , 𝑓 (𝑘), … of all orders are also
analytic on 𝑈 . In particular, then 𝑓 is infinitely differentiable, 𝑓 ∈ 𝒞∞(𝑈).
Proof. Straightforward induction using Lemma 4.19.

Theorem 4.21 (Morera’s theorem [Palka1991, Thm V.3.3]). Let 𝑓 ∶ 𝑈 → ℂ be a continuous
function on an open set 𝑈 ⊂ ℂ. If 𝑓 has the property that

∮
𝜕△

𝑓(𝑧) d𝑧 = 0

for any closed triangle △ ⊂ 𝑈 , then 𝑓 is analytic on 𝑈 .
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Proof. …

Theorem 4.22 (Cauchy’s integral formula for derivatives). Suppose that a function 𝑓 ∶ 𝑈 → ℂ
is analytic on an open simply connected subset 𝑈 ⊂ ℂ of the complex plane. Then for any closed
contour 𝛾 in 𝑈 , any 𝑛 ∈ ℕ, and any point 𝑧 ∈ 𝑈 we have

𝔫𝛾(𝑧) 𝑓 (𝑛)(𝑧) = 𝑛!
2𝜋𝔦 ∮

𝛾

𝑓(𝜁)
(𝜁 − 𝑧)𝑛+1 d𝜁.

Proof. …

Lemma 4.23 (Cauchy’s estimate for derivatives [Palka1991, Thm V.3.6]). Suppose that a func-
tion 𝑓 ∶ 𝑈 → ℂ is analytic on an open set 𝑈 ⊂ ℂ containing the disk ℬ(𝑧0; 𝑟) ⊂ 𝑈 , and suppose
that there exists a constant 𝑀 > 0 such that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ ℬ(𝑧0; 𝑟). Then for any 𝑛 ∈ ℕ
and any 𝑧 ∈ ℬ(𝑧0; 𝑟) we have the following bound for the 𝑛th derivative 𝑓 (𝑛) of 𝑓:

∣𝑓 (𝑛)(𝑧)∣ ≤ 𝑛! 𝑀 𝑟
(𝑟 − |𝑧 − 𝑧0|)𝑛+1 .

In particular, for the center point 𝑧0 of the disk, we have

∣𝑓 (𝑛)(𝑧0)∣ ≤ 𝑛! 𝑀 𝑟−𝑛.

Proof. …

4.6 Liouville’s theorem
Theorem 4.24 (Liouville’s theorem [Palka1991, Thm V.3.7]). If a function 𝑓 ∶ ℂ → ℂ on the
entire complex plane is analytic and bounded, then 𝑓 is a constant function.

Proof. …

4.7 The fundamental theorem of algebra
Theorem 4.25 (Fundamental theorem of algebra [Palka1991, Thm V.3.8]). Every non-constant
polynomial function 𝑝 ∶ ℂ → ℂ has a root, i.e., there exists a 𝑧0 ∈ ℂ such that 𝑝(𝑧0) = 0.

Proof. …

Corollary 4.26 (Polynomial factorization [Palka1991, Thm V.3.9]). A complex-coefficient poly-
nomial 𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 of degree 𝑛 ∈ ℕ can be factored as

𝑝(𝑧) = 𝑐 (𝑧 − 𝑧1) (𝑧 − 𝑧2) ⋯ (𝑧 − 𝑧𝑛)

where 𝑐 = 𝑎𝑛 ≠ 0, and 𝑧1, … , 𝑧𝑛 ∈ ℂ are the roots of 𝑝 (with repetition according to the
multiplicities of the roots).

Proof. This follows from Theorem ?? by induction on the degree of the polynomial, using the
polynomial division (Euclidean algorithm in the ring of univariate polynomials, see MS-C1081
Abstract Algebra).
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4.8 Maximum principle
Theorem 4.27 (Maximum principle for analytic functions [Palka1991, Thm V.3.10]). Let 𝑓 ∶ 𝒟 →
ℂ be an analytic function on a connected open set 𝒟 ⊂ ℂ. Suppose that there exists a point 𝑧0 ∈ 𝒟
such that

|𝑓(𝑧)| ≤ |𝑓(𝑧0)| for all 𝑧 ∈ 𝒟.

Then 𝑓 is a constant function.

Proof. …

Corollary 4.28 (Maximum principle for analytic functions continuous up to the boundary
[Palka1991, Cor V.3.11]). Let 𝒟 ⊂ ℂ be a bounded connected open set. Let 𝑓 ∶ 𝒟 → ℂ be a
continuous function on its closure which is analytic in 𝒟. Then 𝑧 ↦ |𝑓(𝑧)| attains its maximum
in 𝒟 at some point of the boundary 𝜕𝒟.

Proof. …

Lemma 4.29 (Schwarz’s lemma [Palka1991, Thm V.3.14]). Let 𝑓 ∶ ℬ(0; 1) → ℂ be an analytic
function on the open unit disk such that |𝑓(𝑧)| ≤ 1 for all 𝑧 ∈ ℬ(0; 1) and 𝑓(0) = 0. Then we
have

|𝑓 ′(0)| ≤ 1 and |𝑓(𝑧)| ≤ |𝑧| for all 𝑧 ∈ ℬ(0; 1).

Furthermore, unless 𝑓 is of the form 𝑓(𝑧) = 𝜆𝑧 for some 𝜆 ∈ ℂ with |𝜆| = 1, then we have

|𝑓 ′(0)| < 1 and |𝑓(𝑧)| < |𝑧| for all 𝑧 ∈ ℬ(0; 1) ∖ {0} .

Proof. …

4.9 The mean value property
Theorem 4.30 (Mean value property for analytic functions). Suppose that a function 𝑓 ∶ 𝑈 → ℂ
is analytic on an open set 𝑈 ⊂ ℂ containing the closed disk ℬ(𝑧; 𝑟) ⊂ 𝑈 . Then we have

𝑓(𝑧) = 1
2𝜋𝑟 ∮

𝜕ℬ(𝑧;𝑟)

𝑓(𝜁)
𝜁 − 𝑧 |d𝜁|.

Proof. …
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Chapter 5

Power series

5.1 Uniform convergence
Definition 5.1 (Uniform convergence [Palka1991, Sec. VII.1.1]). Let (𝑓𝑛)𝑛∈ℕ be a sequence of
functions 𝑓𝑛 ∶ 𝑋 → ℂ, and let 𝑓 ∶ 𝑋 → ℂ also be a such function. We say that the sequence
(𝑓𝑛)𝑛∈ℕ converges uniformly to 𝑓 (on 𝑋) if for every 𝜀 > 0 there exists an 𝑁 ∈ ℕ such that
for all 𝑛 ≥ 𝑁 we have

∣𝑓𝑛(𝑥) − 𝑓(𝑥)∣ < 𝜀 for all 𝑥 ∈ 𝑋.
Lemma 5.2 (Cauchy criterion for uniform convergence [Palka1991, Thm VII.1.2]). Let 𝑓𝑛 ∶ 𝐴 →
ℂ, 𝑛 ∈ ℕ, be complex-valued functions defined on the same set 𝐴. Then the sequence (𝑓𝑛)𝑛∈ℕ
converges uniformly on 𝐴 if and only if for every 𝜀 > 0 there exists an 𝑁 ∈ ℕ such that for all
𝑚, 𝑛 ≥ 𝑁 and all 𝑧 ∈ 𝐴 we have |𝑓𝑛(𝑧) − 𝑓𝑚(𝑧)| < 𝜀.

(When (𝑓𝑛)𝑛∈ℕ satisfies the condition above, it could be called a uniform Cauchy sequence
on 𝐴.)
Proof. …

Lemma 5.3 (Continuity is preserved in uniform limits [Palka1991, Thm VII.1.1]). Let 𝑋 be a
metric space (e.g., ℝ, ℂ, or a subset of these). If a sequence (𝑓𝑛)𝑛∈ℕ of continuous functions
𝑓𝑛 ∶ 𝑋 → ℂ converges uniformly to a function 𝑓 ∶ 𝑋 → ℂ, then 𝑓 is continuous.
Proof. See MS-C1541 Metric Spaces.

Lemma 5.4 (Integration commutes with uniform limits [Palka1991, Thm VII.1.1]). If a sequence
(𝑓𝑛)𝑛∈ℕ of continuous functions 𝑓𝑛 ∶ [𝑎, 𝑏] → ℂ on a closed interval [𝑎, 𝑏] ⊂ ℝ converges uniformly
to a function 𝑓 ∶ [𝑎, 𝑏] → ℂ, then we have

lim
𝑛→∞

∫
𝑏

𝑎
𝑓𝑛(𝑥) d𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) d𝑥.

Proof. …

Corollary 5.5 (Contour integration commutes with uniform limits [Palka1991, Thm VII.1.1]).
If a sequence (𝑓𝑛)𝑛∈ℕ of continuous functions 𝑓𝑛 ∶ 𝐴 → ℂ on a subset 𝐴 ⊂ ℂ of the complex plane
converges uniformly to a function 𝑓 ∶ 𝐴 → ℂ, then for any piecewise smooth path 𝛾 in 𝐴 we have

lim
𝑛→∞

∫
𝛾

𝑓𝑛(𝑧) d𝑧 = ∫
𝛾

𝑓(𝑧) d𝑧.
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Proof. This follows straightforwardly from the definition of contour integration and Lemma 5.4
above.

Definition 5.6 (Convergence uniformly on compacts [Palka1991, Sec. VII.1.2]). Let (𝑓𝑛)𝑛∈ℕ be
a sequence of functions 𝑓𝑛 ∶ 𝐴 → ℂ on 𝐴 ⊂ ℂ, and let 𝑓 ∶ 𝐴 → ℂ also be a such function. We
say that the sequence (𝑓𝑛)𝑛∈ℕ converges uniformly on compacts (UOC) to 𝑓 if for every
compact subset 𝐾 ⊂ 𝐴 the restrictions 𝑓𝑛|𝐾 ∶ 𝐾 → ℂ converge uniformly on 𝐾 to 𝑓|𝐾 ∶ 𝐾 → ℂ.
We then write

𝑓𝑛
UOC−−−→ 𝑓 as 𝑛 → ∞.

(This notion is also called by the alternative names locally uniform convergence and
normal convergence.)
Lemma 5.7 (UOC limit of analytic functions [Palka1991, Thm VII.3.1]). Suppose that functions
𝑓1, 𝑓2, … ∶ 𝑈 → ℂ are analytic functions on an open set 𝑈 ⊂ ℂ and the sequence (𝑓𝑛)𝑛∈ℕ converges
uniformly on compacts to a function 𝑓. Then 𝑓 is analytic on 𝑈 . Moreover, for any 𝑘 ∈ ℕ, the
sequence (𝑓 (𝑘)

𝑛 )𝑛∈ℕ of 𝑘th derivatives converges uniformly on compacts to 𝑓 (𝑘).
Proof. …

5.2 Complex series
Definition 5.8 (Complex series [Palka1991, Sec. VII.2.1]). Let 𝑧1, 𝑧2, 𝑧3, … ∈ ℂ be complex
numbers. For 𝑁 ∈ ℕ, define the 𝑁th partial sum of these as

𝑆𝑁 =
𝑁

∑
𝑛=1

𝑧𝑛 = 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑁 .

We say that the series ∑∞
𝑛=1 𝑧𝑛 converges if the sequence (𝑆𝑁)𝑁∈ℕ of partial sums has a limit,

and we then denote
∞

∑
𝑛=1

𝑧𝑛 = lim
𝑁→∞

𝑁
∑
𝑛=1

𝑧𝑛 .

(Obvious modifications to the above definition are made if the terms’ indexing starts from
𝑛 = 0 or some other index, and the notation is correspondingly changed to, e.g., ∑∞

𝑛=0.)

Lemma 5.9 (Terms of a convergent series tend to zero). If a complex series ∑∞
𝑛=1 𝑧𝑛 converges,

then we have

lim
𝑛→∞

𝑧𝑛 = 0.

Proof. …

Lemma 5.10 (Geometric series). The geometric series
∞

∑
𝑛=0

𝑧𝑛 = 1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ ,

with ratio 𝑧 ∈ ℂ converges if and only if |𝑧| < 1. In that case its sum is
∞

∑
𝑛=0

𝑧𝑛 = 1
1 − 𝑧 .
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Proof. …

Definition 5.11 (Absolute convergence of a complex series). A complex series ∑∞
𝑛=1 𝑧𝑛 is said

to converge absolutely if the series of absolute values ∑∞
𝑛=1 |𝑧𝑛| converges.

Lemma 5.12 (Absolute convergence implies convergence). If a complex series converges abso-
lutely, then it converges.
Proof. …

Lemma 5.13 (D’Alembert’s ratio test). Suppose that ∑∞
𝑛=1 𝑧𝑛 is a complex series such that the

limit

𝑟 = lim
𝑛→∞

|𝑧𝑛+1|
|𝑧𝑛|

exists. Then:
(i) If 𝑟 < 1, then the series ∑∞

𝑛=1 𝑧𝑛 converges absolutely.

(ii) If 𝑟 > 1, then the series ∑∞
𝑛=1 𝑧𝑛 does not converge.

Proof. …

5.3 Series of functions
Definition 5.14 (Series of functions [Palka1991, Sec. VII.2.2]). Let 𝑓1, 𝑓2, 𝑓3, … be complex-
valued functions on a set 𝐴. For 𝑁 ∈ ℕ, define their 𝑁th partial sum function 𝐹𝑁 ∶ 𝐴 → ℂ
by

𝐹𝑁(𝑧) =
𝑁

∑
𝑛=1

𝑓𝑛(𝑧) = 𝑓1(𝑧) + ⋯ + 𝑓𝑁(𝑧) .

We say that the function series ∑∞
𝑛=1 𝑓𝑛 converges pointwise if the sequence (𝐹𝑁(𝑧))𝑁∈ℕ of

partial sums has a limit at every 𝑧 ∈ 𝐴. We say that the function series ∑∞
𝑛=1 𝑓𝑛 converges

uniformly on 𝐴 if the sequence (𝐹𝑁)𝑁∈ℕ of partial sum functions converges uniformly on 𝐴.
We say that the function series ∑∞

𝑛=1 𝑓𝑛 converges uniformly on compacts if the sequence
(𝐹𝑁)𝑁∈ℕ of partial sum functions converges uniformly on compacts.

The limit function is then denoted by ∑∞
𝑛=1 𝑓𝑛.

(Obvious modifications to the above are made if the terms’ indexing starts from 𝑛 = 0 or
some other index, and the notation is correspondingly changed to, e.g., ∑∞

𝑛=0.)
Lemma 5.15 (Weierstrass M-test [Palka1991, Thm VII.2.2]). Suppose that 𝑀1, 𝑀2, … ≥ 0 are
nonnegative numbers such that the series ∑∞

𝑛=1 𝑀𝑛 converges. Suppose also that for each 𝑛 ∈ ℕ,
𝑓𝑛 ∶ 𝑋 → ℂ is a function on 𝑋 such that |𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝑋. Then the series ∑∞

𝑛=1 𝑓𝑛
converges absolutely and uniformly on 𝑋.
Proof. …

Lemma 5.16 (Series of analytic functions [Palka1991, Thm VII.3.2]). Suppose that functions
𝑓1, 𝑓2, … ∶ 𝑈 → ℂ are analytic functions on an open set 𝑈 ⊂ ℂ such that the series ∑∞

𝑛=1 𝑓𝑛
converges uniformly on compacts to a function 𝑓 ∶ 𝑈 → ℂ. Then 𝑓 is analytic on 𝑈 . Moreover,
for any 𝑘 ∈ ℕ, the series ∑∞

𝑛=1 𝑓 (𝑘)
𝑛 of 𝑘th derivatives converges uniformly on compacts to 𝑓 (𝑘).

Proof. …
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5.4 Power series
Definition 5.17 (Power series [Palka1991, Sec. VII.3.3]). Let 𝑧0 ∈ ℂ be a point in the complex
plane and let 𝑎0, 𝑎1, 𝑎2 … ∈ ℂ be coefficients. A function series of the form

∞
∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛 = 𝑎0 + 𝑎1 (𝑧 − 𝑧0) + 𝑎2 (𝑧 − 𝑧0)2 + ⋯

is called a power series centered at 𝑧0.

Lemma 5.18 (Abel’s theorem). If a power series
∞

∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛

converges at 𝑧 = 𝑤 ∈ ℂ, then it converges absolutely for all 𝑧 ∈ ℂ such that |𝑧 − 𝑧0| < |𝑤 − 𝑧0|.
Proof. …

Corollary 5.19 (Abel’s theorem in the contrapositive). If a power series
∞

∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛

does not converge at 𝑧 = 𝑤 ∈ ℂ, then it does not converge at any 𝑧 ∈ ℂ such that |𝑧−𝑧0| > |𝑤−𝑧0|.
Proof. …

Definition 5.20 (Radius of convergence). The radius of convergence of a power series
∞

∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛

is defined as

𝑅 ∶= sup {|𝑧 − 𝑧0| ∣
∞

∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛 converges}.

From Lemma 5.18 and Corollary 5.19 it follows that the power series ∑∞
𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛

converges for all 𝑧 ∈ ℂ such that |𝑧 − 𝑧0| < 𝑅 and diverges for all 𝑧 ∈ ℂ such that |𝑧 − 𝑧0| > 𝑅.
The disk ℬ(𝑧0; 𝑅) is called the disk of convergence of the power series ∑∞

𝑛=0 𝑎𝑛 (𝑧 − 𝑧0)𝑛.
(If 𝑅 = +∞, we interpret ℬ(𝑧0; 𝑅) = ℂ.)

Lemma 5.21 (D’Alembert’s ratio test for the radius of convergence). Suppose that for the
coefficients of a power series

∞
∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛

the limit

𝜌 = lim
𝑛→∞

|𝑎𝑛|
|𝑎𝑛+1|

exists. Then the radius of convergence 𝑅 of the power series is 𝑅 = 𝜌.
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Proof. …

Theorem 5.22 (Hadamard’s formula for the radius of convergence [Palka1991, Thm VII.3.3]).
Let 𝑧0 ∈ ℂ be a point in the complex plane and let 𝑎0, 𝑎1, 𝑎2 … ∈ ℂ be coefficients. The radius of
convergence of a power series

∞
∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛

is given by the formula

𝑅 = 1
lim sup𝑛→∞

𝑛√|𝑎𝑛|
,

with the conventions 1
+∞ = 0 and 1

0 = +∞.

Proof. …

Lemma 5.23 (Analyticity of power series [Palka1991, Thm VII.3.3]). Let 𝑧0 ∈ ℂ be a point in
the complex plane and let 𝑎0, 𝑎1, 𝑎2 … ∈ ℂ be coefficients. Suppose that the power series

𝑓(𝑧) =
∞

∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛

has radius of convergence 𝑅 > 0. Then it defines an analytic function 𝑓 on the disk ℬ(𝑧0; 𝑅).
The derivative of 𝑓 is given by the power series

𝑓 ′(𝑧) =
∞

∑
𝑛=1

𝑛 𝑎𝑛 (𝑧 − 𝑧0)𝑛−1.

Moreover, the coefficients 𝑎𝑘 are related to the 𝑘th derivatives of 𝑓 at 𝑧0 through the formula

𝑎𝑘 = 𝑓 (𝑘)(𝑧0)
𝑘! .

Proof. …

Lemma 5.24 (Uniqueness of power series representation). Suppose that two power series ∑∞
𝑛=0 𝑎𝑛 (𝑧−

𝑧0)𝑛 and ∑∞
𝑛=0 𝑏𝑛 (𝑧 − 𝑧0)𝑛 converge in a disk ℬ(𝑧0; 𝑟) of radius 𝑟 > 0 and represent the same

function
∞

∑
𝑛=0

𝑎𝑛 (𝑧 − 𝑧0)𝑛 =
∞

∑
𝑛=0

𝑏𝑛 (𝑧 − 𝑧0)𝑛 for 𝑧 ∈ ℬ(𝑧0; 𝑟).

Then their coefficients must be equal: 𝑎𝑛 = 𝑏𝑛 for all 𝑛.

Proof. …
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5.5 Taylor series and local representation of analytic func-
tions

Theorem 5.25 (Taylor series of analytic functions [Palka1991, Thm VII.3.4]). Suppose that
𝑓 ∶ 𝑈 → ℂ is an analytic function on an open set 𝑈 ⊂ ℂ which contains a disk ℬ(𝑧0; 𝑟) ⊂ 𝑈 .
Then the function 𝑓 can be represented in ℬ(𝑧0; 𝑟) as a power series

𝑓(𝑧) =
∞

∑
𝑛=0

𝑓 (𝑛)(𝑧0)
𝑛! (𝑧 − 𝑧0)𝑛.

Moreover, this is the unique power series centered at 𝑧0 that representats 𝑓 in a neighborhood of
𝑧0.

Proof. …

Theorem 5.26 (Equivalent characterizations of analyticity). Let 𝑓 ∶ 𝑈 → ℂ be a continuous
function on an open set 𝑈 ⊂ ℂ. Then the following are equivalent:

• 𝑓 is analytic on 𝑈 ;

• for any 𝑧 ∈ 𝑈 there exists a neighborhood of 𝑧 in which 𝑓 has a primitive;

• for any 𝑧 ∈ 𝑈 there exists a neighborhood of 𝑧 in which 𝑓 can be represented as a convergent
power series.

Proof. …

Lemma 5.27 (No vanishing of all derivatives at a point [Palka1991, Thm VIII.1.1]). Suppose
that 𝑓 ∶ 𝒟 → ℂ is an analytic function on a connected open set 𝒟 ⊂ ℂ. If there exists a point
𝑧0 ∈ 𝒟 such that 𝑓 (𝑛)(𝑧0) = 0 for all 𝑛 ∈ ℕ, then 𝑓 is a constant function.

Proof. …

Theorem 5.28 (Factor theorem for analytic functions [Palka1991, Thm VIII.1.2]). Suppose that
𝑓 ∶ 𝒟 → ℂ is a non-constant analytic function on a connected open set 𝒟 ⊂ ℂ, and 𝑧0 ∈ 𝒟 is a
point where 𝑓(𝑧0) = 0. Then 𝑓 can be uniquely represented as

𝑓(𝑧) = (𝑧 − 𝑧0)𝑚 𝑔(𝑧) for 𝑧 ∈ 𝒟,

where 𝑚 ∈ ℕ and 𝑔 ∶ 𝒟 → ℂ is an analytic function such that 𝑔(𝑧0) ≠ 0.

Proof. …

Corollary 5.29 (Local representation of analytic functions [Palka1991, Cor VIII.1.3]). Suppose
that 𝑓 ∶ 𝒟 → ℂ is a non-constant analytic function on a connected open set 𝒟 ⊂ ℂ. Then for
any 𝑧0 ∈ 𝒟, we can write 𝑓 uniquely in the form

𝑓(𝑧) = 𝑓(𝑧0) + (𝑧 − 𝑧0)𝑚 𝑔(𝑧) for 𝑧 ∈ 𝒟,

where 𝑚 ∈ ℕ and 𝑔 ∶ 𝒟 → ℂ is an analytic function such that 𝑔(𝑧0) ≠ 0.

Proof. Apply Theorem 5.28 to the function 𝑧 ↦ 𝑓(𝑧) − 𝑓(𝑧0).
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Theorem 5.30 (L’Hospital’s rule for analytic functions [Palka1991, Thm VIII.1.4]). Let 𝑓 and
𝑔 be functions that are analytic in a neighborhood of 𝑧0 such that 𝑓(𝑧0) = 0 and 𝑔(𝑧0) = 0. Then
we have

lim
𝑧→𝑧0

𝑓(𝑧)
𝑔(𝑧) = lim

𝑧→𝑧0

𝑓 ′(𝑧)
𝑔′(𝑧) ,

understood in the sense that either both limits exist and are equal to each other, or else neither
limit exists.

Proof. …

Theorem 5.31 (Discrete mapping theorem [Palka1991, Thm VIII.1.5]). Suppose that 𝑓 ∶ 𝒟 → ℂ
is a non-constant analytic function on a connected open set 𝒟 ⊂ ℂ. Then the set of zeros of 𝑓
is discrete, i.e., for every 𝑧0 ∈ 𝒟 such that 𝑓(𝑧0) = 0, there exists a 𝑟 > 0 such that 𝑓(𝑧) ≠ 0 for
all 𝑧 ∈ ℬ(𝑧0; 𝑟) ∖ {𝑧0}.

Proof. …

Corollary 5.32 (Principle of analytic continuation [Palka1991, Cor VIII.1.6]). Let 𝑓, 𝑔 ∶ 𝒟 → ℂ
be two analytic functions on a connected open set 𝒟 ⊂ ℂ. If 𝑓(𝑧) = 𝑔(𝑧) for all 𝑧 in some subset
of 𝒟 which has an accumulation point in 𝒟, then we have 𝑓(𝑧) = 𝑔(𝑧) for all 𝑧 ∈ 𝒟.

Proof. …

5.6 Laurent series
Definition 5.33 (Doubly infinite series [Palka1991, Sec. VII.2.1]). A doubly infinite series of
complex numbers is a series of the form

∞
∑

𝑛=−∞
𝑧𝑛 = ⋯ + 𝑧−2 + 𝑧−1 + 𝑧0 + 𝑧1 + 𝑧2 + ⋯ ,

where … , 𝑧−2, 𝑧−1, 𝑧0, 𝑧1, 𝑧2, … ∈ ℂ. We say that such a series converges to 𝑠 ∈ ℂ if for all 𝜀 > 0
there exists an 𝑁 ∈ ℕ such that for all 𝑚+ ≥ 𝑁 and 𝑚− ≤ −𝑁 we have

∣
𝑚+

∑
𝑛=𝑚−

𝑧𝑛 − 𝑠∣ < 𝜀.

Lemma 5.34 (Convergence of doubly infinite series [Palka1991, Lem VII.2.1]). A doubly infinite
series

∞
∑

𝑛=−∞
𝑧𝑛 = ⋯ + 𝑧−2 + 𝑧−1 + 𝑧0 + 𝑧1 + 𝑧2 + ⋯ ,

of complex numbers converges if and only if both the series ∑∞
𝑛=0 𝑧𝑛 and ∑∞

𝑛=1 𝑧−𝑛 converge.

Proof. …
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Definition 5.35 (Laurent series [Palka1991, Sec. VII.3.4]). A Laurent series centered at 𝑧0 ∈ ℂ
is a doubly infinite series of functions of the form

𝑧 ↦
∞

∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛

= ⋯ + 𝑎−2
(𝑧 − 𝑧0)2 + 𝑎−1

𝑧 − 𝑧0
+ 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + ⋯ .

Lemma 5.36 (Annulus of convergence of Laurent power series [Palka1991, Thm VII.3.5]).
Consider a Laurent series

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛.

Denote

𝜌− = lim sup
𝑛→∞

𝑛√|𝑎−𝑛|, 𝜌+ = ( lim sup
𝑛→∞

𝑛√|𝑎𝑛|)
−1

.

Then the series ∑∞
𝑛=−∞ 𝑎𝑛(𝑧 − 𝑧0)𝑛 converges for all 𝑧 is the annulus

𝒜𝜌−,𝜌+
(𝑧0) ∶= {𝑧 ∈ ℂ ∣ 𝜌− < |𝑧 − 𝑧0| < 𝜌+}.

Moreover, the convergence is uniform on compact subsets of 𝒜𝜌−,𝜌+
(𝑧0), and the series defines

an analytic function 𝑓(𝑧) on the annulus 𝒜𝜌−,𝜌+
(𝑧0).

Proof. …

Theorem 5.37 (Laurent series for analytic functions [Palka1991, Thm VII.3.6]). Suppose that
𝑓 ∶ 𝑈 → ℂ is an analytic function on an open set 𝑈 ⊂ ℂ which contains an annulus

𝒜𝑟1,𝑟2
(𝑧0) = {𝑧 ∈ ℂ ∣ 𝑟1 < |𝑧 − 𝑧0| < 𝑟2}

for some 𝑧0 ∈ ℂ and 0 ≤ 𝑟1 < 𝑟2. Then the function 𝑓 can be uniquely represented in 𝒜𝑟1,𝑟2
(𝑧0)

as a series

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑎𝑛 (𝑧 − 𝑧0)𝑛,

where the coefficients 𝑎𝑛, for 𝑛 ∈ ℤ, are given by

𝑎𝑛 = 1
2𝜋𝔦 ∮

𝜕ℬ(𝑧0;𝑟)

𝑓(𝑧)
(𝑧 − 𝑧0)𝑛+1 d𝑧 for any 𝑟 ∈ (𝑟1, 𝑟2).

Proof. …
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Chapter 6

Isolated singularities and residues

6.1 The extended complex plane
Definition 6.1 (The Riemann sphere). The extended complex plane is the set

ℂ̂ = ℂ ∪ {∞} ,

where ∞ is a symbol added to ℂ to represent a single point at infinity. The set ℂ̂ is given a
topology in such a way that open sets in ℂ remain open in ℂ̂, and sets of the form {𝑧 ∈ ℂ ∣ |𝑧| >
𝑀} for 𝑀 > 0 form a neighborhood basis at ∞.

(This topology makes ℂ̂ homeomorphic to the 2-dimensional sphere in three-dimensional
space, and ℂ̂ is also called the Riemann sphere.)

For example a function 𝑓 ∶ 𝑈 → ℂ has limit lim𝑧→𝑧0
𝑓(𝑧) = ∞ at 𝑧0 if for any 𝑀 > 0 there

exists a 𝛿 > 0 such that |𝑓(𝑧)| > 𝑀 whenever 0 < |𝑧 − 𝑧0| < 𝛿.

6.2 Isolated singularities of analytic functions
Definition 6.2 (Isolated singularity [Palka1991, Sec. VIII.2.1]). Let 𝑓 ∶ 𝑈 → ℂ be an analytic
function on an open set 𝑈 ⊂ ℂ. We say that 𝑓 has an isolated singularity at 𝑧0 ∈ ℂ if
ℬ(𝑧0; 𝑟) ∖ {𝑧0} ⊂ 𝑈 for some 𝑟 > 0 but 𝑧0 ∉ 𝑈 .

Definition 6.3 (Classification of isolated singularities [Palka1991, Sec. VIII.2.1]). Let 𝑧0 ∈ ℂ be
an isolated singularity of an analytic function 𝑓 ∶ 𝑈 → ℂ. Let 𝑟 > 0 be such that ℬ(𝑧0; 𝑟)∖{𝑧0} ⊂
𝑈 , so that by Theorem 5.37 𝑓 can be represented in ℬ(𝑧0; 𝑟) ∖ {𝑧0} uniquely as a Laurent series

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛.

Depending on the coefficients 𝑎𝑛 of negative indices 𝑛 < 0, we distinguish three types of singu-
larities:

• 𝑓 has a removable singularity at 𝑧0 if 𝑎𝑛 = 0 for all 𝑛 < 0;

• 𝑓 has a pole of order 𝑚 ∈ ℕ at 𝑧0 if 𝑎−𝑚 ≠ 0 and 𝑎𝑛 = 0 for all 𝑛 < −𝑚;

• 𝑓 has an essential singularity at 𝑧0 if 𝑎𝑛 ≠ 0 for infinitely many 𝑛 < 0.
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Definition 6.4 (Residue at an isolated singularity [Palka1991, Sec. VIII.2.1]). Let 𝑧0 ∈ ℂ be an
isolated singularity of an analytic function 𝑓 ∶ 𝑈 → ℂ. Let 𝑟 > 0 be such that ℬ(𝑧0; 𝑟)∖{𝑧0} ⊂ 𝑈 ,
so that by Theorem 5.37 𝑓 can be represented in ℬ(𝑧0; 𝑟) ∖ {𝑧0} uniquely as a Laurent series

𝑓(𝑧) =
∞

∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛.

The coefficient 𝑎−1 is called the residue of 𝑓 at 𝑧0, and is denoted Res𝑧0
(𝑓) = 𝑎−1 ∈ ℂ.

Theorem 6.5 (Removable singularity characterization [Palka1991, Thm VIII.2.1 and Thm VIII.2.2]).
Let 𝑧0 ∈ ℂ be an isolated singularity of an analytic function 𝑓 ∶ 𝑈 → ℂ. Then the following
conditions are equivalent:

(R-1) The singularity of 𝑓 at 𝑧0 is removable (i.e., all negative index Laurent series coefficients
of 𝑓 expanded near 𝑧0 vanish).

(R-2) There exists an analytic function ̃𝑓 ∶ 𝑈 ∪ {𝑧0} → ℂ such that 𝑓(𝑧) = ̃𝑓(𝑧) for all 𝑧 ∈ 𝑈 .

(R-3) The limit lim𝑧→𝑧0
𝑓(𝑧) exists in ℂ.

(R-4) The function 𝑓 is bounded in some punctured disk ℬ(𝑧0; 𝑟) ∖ {𝑧0} with 𝑟 > 0.

Proof. …

Theorem 6.6 (Characterization of poles [Palka1991, Thm VIII.2.3 and Thm VIII.2.4]). Let
𝑧0 ∈ ℂ be an isolated singularity of an analytic function 𝑓 ∶ 𝑈 → ℂ. Then the following
conditions are equivalent:

(P-1) The singularity of 𝑓 at 𝑧0 is a pole (i.e., finitely many Laurent series coefficients of 𝑓
near 𝑧0 are nonzero).

(P-2) There exists an 𝑚 ∈ ℕ = {1, 2, …} such that 𝑧 ↦ (𝑧−𝑧0)𝑚 𝑓(𝑧) has a removable singularity
and a nonzero limit as 𝑧 → 𝑧0.

(P-3) The function 𝑓 has the limit lim𝑧→𝑧0
𝑓(𝑧) = ∞ at 𝑧0.

Proof. …

Theorem 6.7 (Characterization of essential singularities [Palka1991, Thm VIII.2.6 and Thm VIII.2.7]).
Let 𝑧0 ∈ ℂ be an isolated singularity of an analytic function 𝑓 ∶ 𝑈 → ℂ. Then the following
conditions are equivalent:

(E-1) The singularity of 𝑓 at 𝑧0 is essential (i.e., infinitely many Laurent series coefficients of
𝑓 near 𝑧0 are nonzero).

(E-2) For any small 𝛿 > 0, the image 𝑓[ℬ(𝑧0; 𝛿) ∖ {𝑧0} ] is dense in ℂ.

(E-3) The limit lim𝑧→𝑧0
𝑓(𝑧) does not exist in the extended complex plane ℂ̂ = ℂ ∪ {∞}.

Proof. …
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6.3 The residue theorem
Theorem 6.8 (Residue theorem [Palka1991, Thm VIII.3.1]). Let 𝑈 ⊂ ℂ be an open set and
𝛾 a contractible closed contour in 𝑈 . Let 𝑓 ∶ 𝑈 ∖ 𝑆 → ℂ be an analytic function with isolated
singularities at a countable set 𝑆 ⊂ 𝑈 of points. Then

∮
𝛾

𝑓(𝑧) 𝑑𝑧 = 2𝜋𝔦 ∑
𝑤∈𝑆

𝔫𝑤(𝛾) Res𝑤(𝑓).

Proof. …

Corollary 6.9 (Residue theorem for Jordan contours [Palka1991, Cor VIII.3.2]). Let 𝑈 ⊂ ℂ be
an open set and 𝑆 ⊂ 𝑈 a discrete subset of it. Let 𝒟 be a Jordan domain such that 𝒟 ⊂ 𝑈 and
𝜕𝒟 ∩ 𝑆 = ∅. Let 𝛾 be a closed contour traversing the boundary 𝜕𝒟 of the Jordan domain in the
positive orientation. Let 𝑓 ∶ 𝑈 ∖ 𝑆 → ℂ be an analytic function with isolated singularities at the
points of 𝑆. Then

∮
𝛾

𝑓(𝑧) 𝑑𝑧 = 2𝜋𝔦 ∑
𝑤∈𝑆∩𝒟

Res𝑤(𝑓).

Proof. …
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Appendix A

Topological preliminaries

A.1 Metrics and related concepts
Definition A.1 (Metric). A metric on a set 𝑋 is a function d ∶ 𝑋 × 𝑋 → [0, ∞) such that for
all 𝑝1, 𝑝2, 𝑝3 ∈ 𝑋 we have

d(𝑝1, 𝑝3) ≤ d(𝑝1, 𝑝2) + d(𝑝2, 𝑝3) (triangle inequality)
d(𝑝1, 𝑝2) = d(𝑝2, 𝑝1) (symmetricity)
d(𝑝1, 𝑝2) = 0 if and only if 𝑝1 = 𝑝2. (separation of points)

The set 𝑋 equipped with the metric d on it is called a metric space.

Lemma A.2 (Metric in the complex plane). The formula

d(𝑧, 𝑤) = |𝑧 − 𝑤| for 𝑧, 𝑤 ∈ ℂ

defines a metric on the complex plane ℂ.
(Thus ℂ becomes a metric space. Also any subset of ℂ, in particular ℝ ⊂ ℂ, becomes a metric

space when equipped with the metric given by the above formula restricted to the subset.)

Proof. …

Definition A.3 (Ball (disk)). Let 𝑋 be a metric space with metric d ∶ 𝑋 × 𝑋 → [0, ∞). Let
𝑝0 ∈ 𝑋 be a point and let 𝑟 > 0.

The set

ℬ(𝑝0; 𝑟) = {𝑝 ∈ 𝑋 ∣ d(𝑝, 𝑝0) < 𝑟}

is called an open ball in 𝑋, centered at 𝑝0, and with radius 𝑟.
The set

ℬ(𝑝0; 𝑟) = {𝑝 ∈ 𝑋 ∣ d(𝑝, 𝑝0) ≤ 𝑟}

is called a closed ball in 𝑋, centered at 𝑝0, and with radius 𝑟.
(In the case of the complex plane ℂ, the term disk is often used instead of the general metric

space theory term ball.)
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Definition A.4 (Interior point). Let 𝑋 be a metric space, and 𝐴 ⊂ 𝑋 a subset. A point 𝑝 ∈ 𝐴
is said to be an interior point of 𝐴 if for some 𝑟 > 0 we have ℬ(𝑝; 𝑟) ⊂ 𝐴.

Definition A.5 (Exterior point). Let 𝑋 be a metric space, and 𝐴 ⊂ 𝑋 a subset. A point
𝑝 ∈ 𝑋 ∖ 𝐴 is said to be an exterior point of 𝐴 if for some 𝑟 > 0 we have ℬ(𝑝; 𝑟) ⊂ 𝑋 ∖ 𝐴.

(It is easy to see that the exterior points of 𝐴 are exactly the interior points)

Definition A.6 (Boundary). Let 𝑋 be a metric space, and 𝐴 ⊂ 𝑋 a subset. A point 𝑝 ∈ 𝑋 is
said to be a boundary point of 𝐴 if for all 𝑟 > 0 we have that ℬ(𝑝; 𝑟) contains points of 𝐴 and
𝑋 ∖ 𝐴 (i.e. ℬ(𝑝; 𝑟) ∩ 𝐴 ≠ ∅ and ℬ(𝑝; 𝑟) ∖ 𝐴 ≠ ∅).

The set of all boundary points of 𝐴 is denoted 𝜕𝐴 and called the boundary of 𝐴.
(It is easy to see that the boundary 𝜕𝐴 ⊂ 𝑋 is exactly the set of points of 𝑋 which are

neither interior nor exterior points of 𝐴.)

Definition A.7 (Open set). Let 𝑋 be a metric space. A subset 𝑈 ⊂ 𝑋 is said to be an open
set if each point 𝑝 ∈ 𝑈 is an interior point of 𝑈 .

Definition A.8 (Closed set). Let 𝑋 be a metric space. A subset 𝐹 ⊂ 𝑋 is said to be a closed
set if the complement 𝑋 ∖ 𝐹 ⊂ 𝑋 is an open set.

(Equivalently, each point 𝑝 ∈ 𝑋 ∖ 𝐹 in the complement of 𝐹 is an exterior point of 𝐹 .)

Definition A.9 (Boundedness). Let 𝑋 be a metric space. with metric d ∶ 𝑋 × 𝑋 → [0, ∞).
A subset 𝐴 ⊂ 𝑋 is bounded if there exists a number 𝑀 > 0 such that d(𝑝, 𝑞) ≤ 𝑀 for all

𝑝, 𝑞 ∈ 𝐴. (If 𝑋 is nonempty, an equivalent definition would be that 𝐴 is bounded if it is a subset
of some ball in 𝑋.)

A function 𝑓 ∶ 𝑍 → 𝑋 with values in a metric space 𝑋 is bounded if the set 𝑓[𝑍] ⊂ 𝑋 of its
values is a bounded subset of 𝑋.

(In the case 𝑋 = ℂ we have the following further characterizations: A subset 𝐴 ⊂ ℂ is
bounded if and only if there exists an 𝑅 > 0 such that |𝑧| ≤ 𝑅 for all 𝑧 ∈ 𝐴. A function
𝑓 ∶ 𝑍 → ℂ is bounded if and only if there exists an 𝑅 > 0 such that |𝑓(𝑧)| ≤ 𝑅 for all 𝑧 ∈ 𝑍.)

A.2 Limits
Definition A.10 (Limit). Let 𝑋 be a metric space and let (𝑥𝑛)𝑛∈ℕ be a sequence of points in
𝑋. We say that the sequence (𝑥𝑛)𝑛∈ℕ converges to a limit 𝑥 ∈ 𝑋 if for any 𝜀 > 0 there exists
an 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁 we have 𝑥𝑛 ∈ ℬ(𝑥; 𝜀) (i.e., d(𝑥𝑛, 𝑥) < 𝜀). We then denote

lim
𝑛→∞

𝑥𝑛 = 𝑥.

(It is straightforward to check that the limit is unique if it exists.)
Let then 𝑋 and 𝑌 be metric spaces, with respective metrics d𝑋 and d𝑌 , and let 𝑓 ∶ 𝑋 → 𝑌

be a function. We say that the function 𝑓 has a limit 𝑦 ∈ 𝑌 at a point 𝑝0 ∈ 𝑋 if for any 𝜀 > 0
there exists a 𝛿 > 0 such that for all 𝑝 ∈ ℬ(𝑝0; 𝛿) ∖ {𝑝0} we have 𝑓(𝑝) ∈ ℬ(𝑦; 𝜀). We then denote

lim
𝑝→𝑝0

𝑓(𝑝) = 𝑦.

(It is straightforward to check that the limit is unique if it exists.)
(Equivalently, written in terms of distances, lim𝑝→𝑝0

𝑓(𝑝) = 𝑦 means that for any 𝜀 > 0 there
exists a 𝛿 > 0 such that we have d𝑌 (𝑓(𝑝), 𝑦) < 𝜀 whenever 0 < d𝑋(𝑝, 𝑝0) < 𝛿.)
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Lemma A.11 (Limits in the complex plane). For a sequence (𝑧𝑛)𝑛∈ℕ of complex numbers we
have

lim
𝑛→∞

𝑧𝑛 = 𝑧

if and only if

lim
𝑛→∞

ℜ𝔢(𝑧𝑛) = ℜ𝔢(𝑧) and lim
𝑛→∞

ℑ𝔪(𝑧𝑛) = ℑ𝔪(𝑧).

Let 𝑋 be a metric space, let 𝑓 ∶ 𝑋 → ℂ a complex-valued function on 𝑋, and let 𝑝0 ∈ 𝑋 be a
point. Then we have

lim
𝑝→𝑝0

𝑓(𝑝) = 𝑧

if and only if

lim
𝑝→𝑝0

ℜ𝔢(𝑓(𝑝)) = ℜ𝔢(𝑧) and lim
𝑝→𝑝0

ℑ𝔪(𝑓(𝑝)) = ℑ𝔪(𝑧).

Proof. …

Lemma A.12 (Operations with complex limits). Let (𝑧𝑛)𝑛∈ℕ and (𝑤𝑛)𝑛∈ℕ be complex number
sequences converging to limits

lim
𝑛→∞

𝑧𝑛 = 𝑧 and lim
𝑛→∞

𝑤𝑛 = 𝑤.

Then we have

lim
𝑛→∞

(𝑧𝑛 + 𝑤𝑛) = 𝑧 + 𝑤, lim
𝑛→∞

(𝑧𝑛𝑤𝑛) = 𝑧𝑤, lim
𝑛→∞

𝑧𝑛
𝑤𝑛

= 𝑧
𝑤 if 𝑤 ≠ 0.

Let 𝑋 be a metric space, let 𝑝0 ∈ 𝑋 be a point, and let 𝑓, 𝑔 ∶ 𝑋 → ℂ be two complex-valued
functions on 𝑋 such that

lim
𝑝→𝑝0

𝑓(𝑝) = 𝑧 and lim
𝑝→𝑝0

𝑔(𝑝) = 𝑤.

Then we have

lim
𝑝→𝑝0

(𝑓(𝑝) + 𝑔(𝑝)) = 𝑧 + 𝑤, lim
𝑝→𝑝0

(𝑓(𝑝) 𝑔(𝑝)) = 𝑧𝑤, lim
𝑝→𝑝0

𝑓(𝑝)
𝑔(𝑝) = 𝑧

𝑤 if 𝑤 ≠ 0.

Proof. The arguments are similar to the proofs given in MS-C1541 Metric Spaces for the
real-valued cases.

Definition A.13 (Cauchy sequence). …
Lemma A.14 (Every real Cauchy sequence converges). If a real number sequence (𝑥𝑛)𝑛∈ℕ is
Cauchy, then it converges to a limit lim𝑛→∞ 𝑥𝑛 ∈ ℝ.

(This property is known as completeness of the metric space ℝ.)
Proof. See MS-C1541 Metric Spaces.

Lemma A.15 (Every complex Cauchy sequence converges). If a complex number sequence
(𝑧𝑛)𝑛∈ℕ is Cauchy, then it converges to a limit lim𝑛→∞ 𝑧𝑛 ∈ ℂ.

(This property is known as completeness of the metric space ℂ.)
Proof. See MS-C1541 Metric Spaces.

(Idea: This follows from Lemma A.14 by considering real and imaginary parts separately and
picking a subsequence of a subsequence.)
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A.3 Continuity
Definition A.16 (Continuity). Let 𝑋 and 𝑌 be metric spaces. A function 𝑓 ∶ 𝑋 → 𝑌 is said to
be continuous at a point 𝑝0 ∈ 𝑋 if lim𝑝→𝑝0

𝑓(𝑝) = 𝑓(𝑝0).
(Equivalently, for every 𝜀 > 0 there exists a 𝛿 > 0 such that for any 𝑝 ∈ ℬ(𝑝0; 𝛿) we have

𝑓(𝑝) ∈ ℬ(𝑓(𝑝0); 𝜀).)
A function 𝑓 ∶ 𝑋 → 𝑌 is said to be continuous if it is continuous at every point 𝑝0 ∈ 𝑋.

Lemma A.17 (Continuity of complex-valued functions). Let 𝑋 be a metric space, and let
𝑓 ∶ 𝑋 → ℂ be a complex-valued function on 𝑋. Then 𝑓 is continuous at 𝑝0 ∈ 𝑋 if and only if its
real and imaginary parts 𝑝 ↦ ℜ𝔢(𝑓(𝑝)) and 𝑝 ↦ ℑ𝔪(𝑓(𝑝)) are continuous at 𝑝0.

Proof. …

Corollary A.18 (Continuity of coordinate projections). The coordinate projections

ℜ𝔢∶ ℂ → ℝ and ℑ𝔪∶ ℂ → ℝ
𝑧 ↦ ℜ𝔢(𝑧) 𝑧 ↦ ℑ𝔪(𝑧)

are continuous functions.

Proof. …

Lemma A.19 (Operations with continuous complex-valued functions). Let 𝑋 be a metric space,
let 𝑝0 ∈ 𝑋 be a point, and let 𝑓, 𝑔 ∶ 𝑋 → ℂ be two complex-valued functions on 𝑋 which are
continuous at 𝑝0. Then also the functions

𝑝 ↦ 𝑓(𝑝) + 𝑔(𝑝) and 𝑝 ↦ 𝑓(𝑝) 𝑔(𝑝)

are continuous at 𝑝0.
If moreover 𝑔(𝑝0) ≠ 0, then also the function 𝑝 ↦ 𝑓(𝑝)

𝑔(𝑝) is continuous at 𝑝0.

Proof. …

Lemma A.20 (Continuity characterization). Let 𝑋 and 𝑌 be metric spaces, and let 𝑓 ∶ 𝑋 → 𝑌
be a function. Then the following are equivalent:

• 𝑓 is a continuous function;

• for every open set 𝑉 ⊂ 𝑌 , the preimage 𝑓−1[𝑉 ] = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝑉 } is an open set in 𝑋;

• for every closed set 𝐴 ⊂ 𝑌 , the preimage 𝑓−1[𝐴] = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝐴} is a closed set in 𝑋.

Proof. See MS-C1541 Metric Spaces.

Lemma A.21 (Composition of continuous functions). Let 𝑋, 𝑌 , and 𝑍 be metric spaces, and
let 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 be functions. If 𝑓 is continuous at 𝑥0 ∈ 𝑋 and 𝑔 is continuous at
𝑓(𝑥0) ∈ 𝑌 , then the composition 𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 is continuous at 𝑥0.

(The composition 𝑔 ∘ 𝑓 is defined by the formula (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).)

Proof. …
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Corollary A.22 (Real multivariate polynomials are continuous). Let 𝑁 ∈ ℕ be a natural num-
ber, and let 𝑐𝑛,𝑚 ∈ ℝ be real numbers for 𝑛, 𝑚 ∈ {0, 1, … , 𝑁}. Then the function 𝑝 ∶ ℂ → ℝ
defined by

𝑝(𝑥 + 𝔦𝑦) =
𝑁

∑
𝑚=0

𝑁
∑
𝑛=0

𝑐𝑚,𝑛 𝑥𝑚 𝑦𝑛

is continuous.

Proof. See MS-C1541 Metric Spaces.

Definition A.23 (Uniform continuity). Let 𝑋 and 𝑌 be metric spaces. A function 𝑓 ∶ 𝑋 → 𝑌
is uniformly continuous if for every 𝜀 > 0 there exists a 𝛿 > 0 such that for any 𝑝0 ∈ 𝑋 and
𝑝 ∈ ℬ(𝑝0; 𝛿) we have 𝑓(𝑝) ∈ ℬ(𝑓(𝑝0); 𝜀).
Lemma A.24 (Uniform continuity implies continuity). If a function 𝑓 ∶ 𝑋 → 𝑌 is uniformly
continuous, then it is continuous.

Proof. See MS-C1541 Metric Spaces.
(The easy proof is also a good exercise.)

A.4 Connectedness and path-connectedness
Definition A.25 (Connectedness). A set 𝐴 ⊂ 𝑋 in a metric space 𝑋 is disconnected if there
exists a continuous surjective function 𝑓 ∶ 𝐴 → {0, 1} onto the two-element discrete set {0, 1}.
Otherwise 𝐴 is connected; then every continuous function 𝐴 → {0, 1} must be either constant
0 or constant 1.

(The usual definition in topology textbooks reads slightly differently, but it is equivalent to
the one we chose here by Lemma A.20.)

Definition A.26 (Path-connectedness). A set 𝐴 ⊂ 𝑋 in a metric space 𝑋 is path connected
if for any two points 𝑝, 𝑞 ∈ 𝑋 there exists a continuous function 𝛾 ∶ [0, 1] → 𝑋 such that 𝛾(0) = 𝑝
and 𝛾(1) = 𝑞 (a parametrized path in 𝑋 starting from 𝑝 and ending at 𝑞).

Lemma A.27 (Path-connectedness implies connectedness). If a metric space 𝑋 is path-connected,
then it is connected.

Proof. See MS-C1541 Metric Spaces.

Lemma A.28 (Open connected sets are path-connected). Suppose that 𝑈 ⊂ ℂ is an open subset
of the complex plane. Then 𝑈 is connected if and only if it is path-connected.

Proof. See MS-C1541 Metric Spaces.

A.5 Compactness
Definition A.29 (Compactness). Let 𝑋 be a metric space. A subset 𝐾 ⊂ 𝑋 is compact if
every sequence (𝑥𝑛)𝑛∈ℕ of points 𝑥𝑛 ∈ 𝐾 has a subsequence (𝑥𝑛𝑘

)𝑘∈ℕ which converges to a limit
lim𝑘→∞ 𝑥𝑛𝑘

∈ 𝐾 in the set 𝐾.

Theorem A.30 (Bolzano-Weierstrass theorem). A subset 𝐵 ⊂ ℝ of the real line is compact if
an only if it is closed and bounded.

A subset 𝐴 ⊂ ℂ of the complex plane is compact if an only if it is closed and bounded.
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Proof. See MS-C1541 Metric Spaces.

Theorem A.31 (Boundedness of continuous functions on compacts). Suppose that 𝑋 is compact.
Then every continuous function 𝑓 ∶ 𝑋 → ℝ is bounded.

Proof. …

Lemma A.32 (On a compact domain continuity implies uniform continuity). If 𝑋 is compact
and a function 𝑓 ∶ 𝑋 → 𝑌 is continuous, then it is uniformly continuous.

Proof. See MS-C1541 Metric Spaces.

Lemma A.33 (Continuous bijection from a compact domain is a homeomorphism). Let 𝑋 and
𝑌 be metric spaces and assume that 𝑋 is compact. Then for any continuous bijection 𝑓 ∶ 𝑋 → 𝑌 ,
also the inverse 𝑓−1 ∶ 𝑌 → 𝑋 is continuous.

Proof. See MS-C1541 Metric Spaces.

Theorem A.34 (Cantor’s intersection theorem [Palka1991, Thm II.4.5]). Let 𝑋 be a metric
space. Suppose that 𝐾1, 𝐾2, 𝐾3, … are nonempty compact subsets of 𝑋 nested so that 𝐾1 ⊃
𝐾2 ⊃ 𝐾3 ⊃ ⋯. Then the intersection ⋂∞

𝑛=1 𝐾𝑛 is nonempty.

Proof. See MS-C1541 Metric Spaces.

A.6 Simple connectedness
Definition A.35 (Path homotopy for closed paths). Let 𝑋 be a metric space and 𝛾0 ∶ [𝑎, 𝑏] →
𝑋 and 𝛾0 ∶ [𝑎, 𝑏] → 𝑋 two closed paths in 𝑋. If there exists a continuous function (called a
homotopy)

Γ∶ [0, 1] × [𝑎, 𝑏] → 𝑋

such that

Γ(0, 𝑡) = 𝛾0(𝑡) and Γ(1, 𝑡) = 𝛾1(𝑡) for all 𝑡 ∈ [𝑎, 𝑏]

and

Γ(𝑠, 𝑎) = Γ(𝑠, 𝑏) for all 𝑠 ∈ [0, 1],

then we say that the closed paths 𝛾0 and 𝛾1 are homotopic.

Definition A.36 (Contractible path). Let 𝑋 be a metric space. A closed path 𝛾 ∶ [𝑎, 𝑏] → 𝑋 is
called contractible if it is homotopic to a constant path.

Definition A.37 (Simple connectedness). A metric space is said to be simply connected if
every closed path 𝛾 ∶ [𝑎, 𝑏] → 𝑋 in 𝑋 is contractible.
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Appendix B

Preliminaries from calculus

B.1 Differentiability
Definition B.1 (Real differentiability). Let 𝑚, 𝑛 ∈ ℕ, and let 𝑓 ∶ 𝑈 → ℝ𝑚 be a function defined
on a subset 𝑈 ⊂ ℝ𝑛. A linear map 𝐿∶ ℝ𝑛 → ℝ𝑚 is said to be a differential of 𝑓 at 𝑝0 ∈ 𝑈 if

𝑓(𝑝) = 𝑓(𝑝0) + 𝐿(𝑝 − 𝑝0) + 𝐸(𝑝 − 𝑝0)
where the error term 𝐸 is small near 𝑝0 in the sense that

lim
𝑝→𝑝0

‖𝐸(𝑝 − 𝑝0)‖
‖𝑝 − 𝑝0‖ = 0.

We say that 𝑓 is differentiable at 𝑝0 if such a linear map 𝐿 exists.
It is easy to check that the differential 𝐿 of 𝑓 at 𝑝0 is unique if 𝑝0 is an interior point of 𝑈 ;

we then denote it by 𝐿 = d𝑓(𝑝0).
Lemma B.2 (Differentiability implies continuity). If a function 𝑓 ∶ 𝑈 → ℝ𝑚 defined on a subset
𝑈 ⊂ ℝ𝑛 is differentiable at 𝑝0 ∈ 𝑈 , then it is continuous at 𝑝0.

Proof. …

Lemma B.3 (Jacobian matrix of the differential). If a function 𝑓 ∶ 𝑈 → ℝ𝑚 defined on a subset
𝑈 ⊂ ℝ𝑛 is differentiable at an interior point 𝑝0 of 𝑈 , then it has all first order partial derivatives
at 𝑝0, and the matrix representation of the differential d𝑓(𝑝0) in the standard bases of ℝ𝑚 and
ℝ𝑛 is

d𝑓(𝑝0) = ⎡
⎢
⎣

𝜕𝑓1
𝜕𝑥1

(𝑝0) ⋯ 𝜕𝑓1
𝜕𝑥𝑛

(𝑝0)
⋮ ⋱ ⋮

𝜕𝑓𝑚
𝜕𝑥1

(𝑝0) ⋯ 𝜕𝑓𝑚
𝜕𝑥𝑛

(𝑝0)
⎤
⎥
⎦

∈ ℝ𝑚×𝑛,

where 𝑓1, … , 𝑓𝑚 ∶ 𝑈 → ℝ denote component functions of 𝑓.

Proof. …

Lemma B.4 (Vanishing partial derivatives implies locally constant). Suppose that 𝑓 ∶ 𝑈 → ℝ𝑚

is a function defined on an open and connected subset 𝑈 ⊂ ℝ𝑛 of ℝ𝑛 whose first order partial
derivatives exist and are zero at all points of 𝑈 . Then 𝑓 is a constant function.

Proof. …
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B.2 Riemann integral
For the purposes of this course, it suffices to know the Riemann integral. (Those who already
know Lebesgue integration theory can substitute that more general notion of integral every-
where.)

Definition B.5 (Riemann integral). …

Lemma B.6 (Riemann integrability of continuous functions). Any continuous function 𝑓 ∶ [𝑎, 𝑏] →
ℝ is Riemann integrable on [𝑎, 𝑏].
Proof. See MS-C1541 Metric Spaces.

B.3 Trigonometry
Lemma B.7 (Trigonometric angle sum identities). Let 𝛼, 𝛽 ∈ ℝ. Then we have

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)
sin(𝛼 + 𝛽) = cos(𝛼) sin(𝛽) + sin(𝛼) cos(𝛽).

Proof. …

B.4 Supremum, infimum, limit superior, and limit inferior
Definition B.8 (Supremum). The supremum, or the least upper bound, of a set 𝐴 ⊂ ℝ is
the smallest real number 𝑠 such that 𝑎 ≤ 𝑠 for all 𝑎 ∈ 𝐴, and is denoted by 𝑠 = sup 𝐴.

By the completeness axiom of real numbers, every nonempty set (𝐴 ≠ ∅) of real numbers
which is bounded from above (for some 𝑢 ∈ ℝ we have 𝑎 ≤ 𝑢 for all 𝑎 ∈ 𝐴) has a supremum
sup 𝐴 ∈ ℝ. We adopt the notational conventions that sup ∅ = −∞, and that sup 𝐴 = +∞ if 𝐴
is not bounded from above.

For convenience, we also adopt some flexibility in the notation: for example the supremum
of values of a real-valued function on a set 𝐷 is denoted by

sup
𝑥∈𝐷

𝑓(𝑥) ∶= sup {𝑓(𝑥) ∣ 𝑥 ∈ 𝐷}

and the supremum of values in the tail of a real-number sequence (𝑥𝑛) starting from index 𝑚 is
denoted by

sup
𝑛≥𝑚

𝑥𝑛 ∶= sup {𝑥𝑛 ∣ 𝑚 ≥ 𝑛} .

Definition B.9 (Infimum). The infimum, or the greatest lower bound, of a set 𝐴 ⊂ ℝ is
the greatest real number 𝑖 such that 𝑎 ≥ 𝑖 for all 𝑎 ∈ 𝐴, and is denoted by 𝑖 = inf 𝐴.

By the completeness axiom of real numbers, every nonempty set (𝐴 ≠ ∅) of real numbers
which is bounded from below (for some ℓ ∈ ℝ we have 𝑎 ≥ ℓ for all 𝑎 ∈ 𝐴) has an infimum
inf 𝐴 ∈ ℝ. We adopt the notational conventions that inf ∅ = +∞, and that inf 𝐴 = −∞ if 𝐴 is
not bounded from below.

For convenience, we also adopt some flexibility in the notation for infimums of function values
or sequence values, similarly as with supremums.
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Definition B.10 (Limit superior). Let (𝑥𝑛)𝑛∈ℕ be a sequence of real numbers. Then the limit
superior of the sequence is defined as

lim sup
𝑛→∞

𝑥𝑛 ∶= lim
𝑚→∞

( sup
𝑛≥𝑚

𝑥𝑛).

With the following conventions, the limit superior of a sequence always exists as either a real
number or one of the symbols ±∞. If the sequence is not bounded from above, then by conven-
tions regarding the supremum, we have sup𝑛≥𝑚 𝑥𝑛 = +∞ for every 𝑚, so we correspondingly
set lim sup𝑛→∞ 𝑥𝑛 = +∞. Otherwise the sequence (sup𝑛≥𝑚 𝑥𝑛)𝑚∈ℕ is a decreasing sequence
of real numbers, so either it is bounded from below and converges to lim𝑚→∞ ( sup𝑛≥𝑚 𝑥𝑛) =
inf𝑚∈ℕ ( sup𝑛≥𝑚 𝑥𝑛) ∈ ℝ, or it is not bounded from below and we set lim sup𝑛→∞ 𝑥𝑛 = inf𝑚∈ℕ ( sup𝑛≥𝑚 𝑥𝑛) =
−∞.

Definition B.11 (Limit inferior). Let (𝑥𝑛)𝑛∈ℕ be a sequence of real numbers. Then the limit
inferior of the sequence is defined as

lim inf
𝑛→∞

𝑥𝑛 ∶= lim
𝑚→∞

( inf
𝑛≥𝑚

𝑥𝑛).

With the following conventions, the limit inferior of a sequence always exists as either a real
number or one of the symbols ±∞. If the sequence is not bounded from below, then by con-
ventions regarding the infimum, we have inf𝑛≥𝑚 𝑥𝑛 = −∞ for every 𝑚, so we correspondingly
set lim inf𝑛→∞ 𝑥𝑛 = −∞. Otherwise the sequence (inf𝑛≥𝑚 𝑥𝑛)𝑚∈ℕ is an increasing sequence
of real numbers, so either it is bounded from above and converges to lim𝑚→∞ ( inf𝑛≥𝑚 𝑥𝑛) =
sup𝑚∈ℕ ( inf𝑛≥𝑚 𝑥𝑛) ∈ ℝ, or it is not bounded from above and we set lim inf𝑛→∞ 𝑥𝑛 = sup𝑚∈ℕ ( inf𝑛≥𝑚 𝑥𝑛) =
+∞.

Lemma B.12 (Limit with limsup and liminf). Let (𝑥𝑛)𝑛∈ℕ be a sequence of real numbers, and
let 𝑥 ∈ ℝ. Then the following are equivalent:

• The limit lim𝑛→∞ 𝑥𝑛 exists and equals 𝑥.

• We have both lim sup𝑛→∞ 𝑥𝑛 = 𝑥 and lim inf𝑛→∞ 𝑥𝑛 = 𝑥.

(With the usual conventions of ±∞ as possible limits of real-number sequences, the above
equivalence of conditions also extends to the cases 𝑥 = ±∞.)

Proof. …
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