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This is a blueprint for a project which forms a part of the course MS-EV0029 Introduction to
Formalized Mathematics in Lean at Aalto University, running from February to June, 2025. The
goal is to formalize the Fisher-Tippett-Gnedenko theorem, classifying univariate extreme value
distributions. Contributions are welcome by course participants!

WARNING: The blueprint is still work in progress! Contributions by the course
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Chapter 1

Cumulative distribution functions

Definition 1.1. A function 𝐹 ∶ ℝ → ℝ is a cumulative distribution function (c.d.f.) if

(i) 𝑥 ↦ 𝐹(𝑥) is increasing;

(ii) 𝑥 ↦ 𝐹(𝑥) is right-continuous;

(iii) lim𝑥→−∞ 𝐹(𝑥) = 0 and lim𝑥→+∞ 𝐹(𝑥) = 1.

Lemma 1.2. If 𝑋 is a real-valued random variable, then the function 𝐹 ∶ ℝ → ℝ given by
𝐹(𝑥) = P[𝑋 ≤ 𝑥] is a c.d.f.

Proof. Property (1.) in Definition 1.1 is obvious (by monotonicity of measures) and proper-
ties (2.) and (3.) are simple consequences of monotone convergence theorems for probability
measures.

1.1 Degenerate distributions
Definition 1.3. A c.d.f. 𝐹 is said to be degenerate if for every 𝑥 ∈ ℝ we have either 𝐹(𝑥) = 0
or 𝐹(𝑥) = 1. Otherwise 𝐹 is said to be nondegenerate.

Lemma 1.4. 𝐹 is a degenerate c.d.f. if and only if there exists a 𝑥0 ∈ ℝ such that

𝐹(𝑥) = {0 for 𝑥 < 𝑥0
1 for 𝑥 ≥ 𝑥0.

Proof. The “if” direction is clear. To prove the “only if” direction, assume that 𝐹 is a degenerated
c.d.f., and let 𝑥0 = inf {𝑥 ∈ ℝ ∣ 𝐹(𝑥) = 1}. Then it is straightforward to show by properties of a
c.d.f. that 𝐹 has the asserted form.

Lemma 1.5. The c.d.f. of Dirac delta mass 𝛿𝑥0
at 𝑥0 ∈ ℝ is degenerate.

Proof. …

Lemma 1.6. If a c.d.f. 𝐹 is degenerate, then it is the c.d.f. of a Dirac delta mass 𝛿𝑥0
at some

point 𝑥0 ∈ ℝ.

Proof. …
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1.2 Distributions of maxima of independent random vari-
ables

Lemma 1.7. Let 𝑋 and 𝑌 be two independent real-valued random variables with respective
cumulative distribution functions 𝐹 and 𝐺, i.e. 𝐹(𝑥) = P[𝑋 ≤ 𝑥] and 𝐺(𝑥) = P[𝑌 ≤ 𝑥]. Then
the c.d.f. of 𝑀 = max(𝑋, 𝑌 ) is 𝑥 ↦ 𝐹(𝑥) 𝐺(𝑥).
Proof. Fix 𝑥 ∈ ℝ. Note that max(𝑋, 𝑌 ) ≤ 𝑥 if and only if both 𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑥. Calculate,
using independence,

P[ max(𝑋, 𝑌 ) ≤ 𝑥] = P[𝑋 ≤ 𝑥 𝑌 ≤ 𝑥] = P[𝑋 ≤ 𝑥] P[𝑌 ≤ 𝑥] = 𝐹(𝑥) 𝐺(𝑥).

Lemma 1.8. Let 𝑋0, 𝑋1, … , 𝑋𝑛−1 be independent identically distributed real-valued random
variables with cumulative distribution functions 𝐹 , i.e. 𝐹(𝑥) = P[𝑋𝑗 ≤ 𝑥] for every 𝑗. Then the
c.d.f. of

𝑀𝑛 = max
0≤𝑗<𝑛

𝑋𝑗

is the function 𝑥 ↦ (𝐹(𝑥))𝑛.

Proof. Induction on 𝑛 using 1.7.

Lemma 1.9. Let 𝑋0, 𝑋1, … , 𝑋𝑛−1 be independent identically distributed real-valued random
variables with cumulative distribution functions 𝐹 , i.e. 𝐹(𝑥) = P[𝑋𝑗 ≤ 𝑥] for every 𝑗, and let
𝑎 > 0 and 𝑏 ∈ ℝ. Then the c.d.f. of

𝑀̂𝑛 = max0≤𝑗<𝑛 𝑋𝑗 − 𝑏
𝑎

is the function 𝑥 ↦ (𝐹(𝑎𝑥 + 𝑏))𝑛.

Proof. Use 1.8 and do a change of variables.

1.3 Distributions of minima of independent random vari-
ables

1.4 Equivalence classes modulo affine transformations
Definition 1.10. The collection of all transformations ℝ → ℝ of the form 𝑥 ↦ 𝑎𝑥 + 𝑏, where
𝑎 > 0, 𝑏 ∈ ℝ, forms a group. We call this the orientation preserving affine isomorphism group
and denote it by Aff+ℝ .

Definition 1.11. The action of an orientation preserving affine isomorphism 𝐴 ∈ Aff+ℝ on a
cumulative distribution function 𝐹 is defined so that 𝐴.𝐹 ∶ ℝ → ℝ is given by (𝐴.𝐹)(𝑥) =
𝐹(𝐴−1(𝑥)). Then 𝐴.𝐹 is also a c.d.f.

Lemma 1.12. The actions of orientation preserving affine isomorphisms on a cumulative dis-
tribution functions is a group action, i.e., 1.𝐹 = 𝐹 and (𝐴𝐵).𝐹 = 𝐴.(𝐵.𝐹) for any c.d.f. 𝐹 and
any 𝐴, 𝐵 ∈ Aff+ℝ .
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Proof. Direct calculations.

Lemma 1.13. Let 𝐹 be a cumulative distribution function and 𝐴 ∈ Aff+ℝ an orientation pre-
serving affine isomorphism. Then 𝐴.𝐹 is degenerate if and only if 𝐹 is degenerate.

Proof. Straightforward from the definitions.

Lemma 1.14. Let 𝐹 be a cumulative distribution function, and 𝐴 ∈ Aff+ℝ an orientation pre-
serving affine isomorphism. If a point 𝑥 ∈ ℝ is a continuity point of 𝐹 , then the point 𝐴(𝑥) ∈ ℝ
is a continuity point of 𝐴.𝐹 .

Proof. Straightforward.

1.5 Miscellaneous results on cumulative distribution func-
tions

Lemma 1.15 (Continuity points of c.d.f.s are those which carry no point mass). Let 𝐹 be
cumulative distribution function of a probability measure 𝜇 on ℝ. A point 𝑥 ∈ ℝ is a continuity
point of 𝐹 if and only if 𝜇[{𝑥}] = 0.

Proof. A c.d.f. is always continuous from the right.
Continuity of 𝐹 from the left at 𝑥 means that for any sequence (𝑥𝑛)𝑛∈ℕ increasing to 𝑥 (i.e.,

𝑥𝑛 ≤ 𝑥𝑛+1 < 𝑥 for all 𝑛 ∈ ℕ)

𝐹(𝑥𝑛) → 𝐹(𝑥),

or equivalently in terms of measures

𝜇[(−∞, 𝑥𝑛]] → 𝜇[(−∞, 𝑥]].

But by monotone convergence of measures, we always have

𝜇[(−∞, 𝑥𝑛]] → 𝜇[(−∞, 𝑥)]
= 𝜇[(−∞, 𝑥]] − 𝜇[{𝑥}].

A comparison of these conditions shows that 𝐹 is also continuous from the left at 𝑥 if and only
if 𝜇[{𝑥}] = 0.

Lemma 1.16 (A pair of nontrivial continuity points of nondegenerate c.d.f.). Let 𝐺 be a nonde-
generate c.d.f. Then there exists continuity points 𝑥1 < 𝑥2 of 𝐺 such that 0 < 𝐺(𝑥1) ≤ 𝐺(𝑥2) < 1.

Proof. Since 𝐺 is nondegenerate, there exists some 𝑥0 ∈ ℝ such that 0 < 𝐺(𝑥0) < 1. Since
𝐺 is continuous from the right, for some small 𝛿 > 0 we have that 0 < 𝐺(𝑥) < 1 for all
𝑥 ∈ [𝑥0, 𝑥0 + 𝛿). Since the continuity points of 𝐺 are dense, from any nonempty open interval
we may pick a continuity point. First pick a continuity point 𝑥1 ∈ (𝑥0, 𝑥0 + 𝛿), and then pick
another continuity point 𝑥2 ∈ (𝑥1, 𝑥0 + 𝛿).
Lemma 1.17 (Equality of c.d.f.s on a dense set suffices). Suppose that 𝐹, 𝐺 are two c.d.f.s and
𝑆 ⊆ ℝ is a dense subset of the real line. If 𝐹(𝜉) = 𝐺(𝜉) for all 𝜉 ∈ 𝑆, then we have 𝐹 = 𝐺.
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Proof. We must prove that for any 𝑥 ∈ ℝ we have 𝐹(𝑥) = 𝐺(𝑥). But by right-continuity of
c.d.f.s, density of 𝑆, and coincidence of 𝐹 and 𝐺 on 𝑆, we have

𝐹(𝑥) = lim
𝜉→𝑥+ along 𝑆

𝐹(𝜉)

= lim
𝜉→𝑥+ along 𝑆

𝐺(𝜉) = 𝐺(𝑥).

1.6 Topology on orientation-preserving affine isomorphisms
Definition 1.18. We equip the space Aff+ℝ of orientation-preserving affine isomorphisms with the
topology of pointwise convergence, i.e., with the coarsest topology which makes the evaluations
𝐴 ↦ 𝐴(𝑥) continuous for all 𝑥 ∈ ℝ.

Lemma 1.19 (The coefficients of affine map depend continuously on the map). The coefficients
𝑎 and 𝑏 of an orientation-preserving affine isomorphism 𝐴(𝑥) = 𝑎𝑥 + 𝑏 depend continuously on
𝐴.

Proof. We may first write 𝑎 = 𝐴(1) − 𝐴(0) and 𝑏 = 𝐴(0). These depend continuously on 𝐴,
since the evaluations 𝐴(1) and 𝐴(0) do.

Lemma 1.20 (Metrizability of the topology on oriented affine isomorphisms). The topology of
pointwise convergence makes Aff+ℝ homeomorphic to ℝ2, and in particular metrizable.

Proof. The essential claim is that the function

cfs ∶ Aff+ℝ → (0, +∞) × ℝ

obtained by mapping 𝐴(𝑥) = 𝑎𝑥 + 𝑏 to its coefficients (𝑎, 𝑏) is a homeomorphism. (The homeo-
morphism to ℝ2 = ℝ × ℝ follows by combining with the homeomorphism (𝑎, 𝑏) ↦ (log 𝑎, 𝑏).)

The continuity of cfs follows from Lemma 1.19. For the continuity of the inverse, we must
only check that for any 𝑥 ∈ ℝ, its composition with the point evaluation at 𝑥 is continuous. But
the composition is (𝑎, 𝑏) ↦ 𝑎𝑥 + 𝑏, and the continuity is clear.

Lemma 1.21 (Inversion of orientation preserving affine isomorphisms is continuous). The map
𝐴 ↦ 𝐴−1 is continuous on Aff+ℝ . In particular, inversion defines a homeomorphism of Aff+ℝ to
itself.

Proof. Calculate and use Lemma 1.19.

Lemma 1.22 (The action of oriented affine transforms on c.d.f.s is continuous). The action 𝐴.𝐹
of 𝐴 ∈ Aff+ℝ on a c.d.f 𝐹 depends jointly continuously on 𝐴 and 𝐹 .

(The topology on c.d.f.s is the topology of convergence in distribution, i.e., convergence at
all continuity points of the limit cdf.)

Proof. The spaces are metrizable, so it suffices to check sequential continuity.
Suppose that 𝐴𝑛 → 𝐵 (oriented affine isomophisms) and 𝐹𝑛

d⟶ 𝐺 (c.d.f.s) as 𝑛 → ∞. Let
𝑥 ∈ ℝ be a continuity point of 𝐵.𝐺. Let 𝜀 > 0. Note that 𝐵−1(𝑥) is a continuity point of 𝐺.
Then there exists a 𝛿 > 0 such that |𝐺(𝑦) − 𝐺(𝐵−1(𝑥))| < 𝜀

2 when |𝑦 − 𝐵−1(𝑥)| < 𝛿.
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By density of continuity points of 𝐺, pick continuity points 𝑦−, 𝑦+ such that

𝐵−1(𝑥) − 𝛿 < 𝑦− < 𝐵−1(𝑥) < 𝑦+ < 𝐵−1(𝑥) + 𝛿.

Since 𝐹𝑛
d⟶ 𝐺, we have that 𝐹𝑛(𝑦±) → 𝐺(𝑦±) as 𝑛 → ∞, and in particular there exists some 𝑁

such that for 𝑛 ≥ 𝑁 we have ∣𝐹𝑛(𝑦±) − 𝐺(𝑦±)∣ < 𝜀
4 for both 𝑦±.

By Lemma 1.21 and 𝐴𝑛 → 𝐵, we get that 𝐴−1
𝑛 → 𝐵−1, and in particular there exists some

𝑁 ′ such that for 𝑛 ≥ 𝑁 ′ we have

𝑦− < 𝐴−1
𝑛 (𝑥) < 𝑦+.

For 𝑛 ≥ max {𝑁, 𝑁 ′}, we then have

(𝐴𝑛.𝐹𝑛)(𝑥) = 𝐹𝑛(𝐴−1
𝑛 (𝑥))

≤ 𝐹𝑛(𝑦+)
< 𝐺(𝑦+) + 𝜀

4
≤ 𝐺(𝐵−1(𝑥)) + 𝜀

2 + 𝜀
4

= (𝐵.𝐺)(𝑥) + 3𝜀
4

< (𝐵.𝐺)(𝑥) + 𝜀

and similarly

(𝐴𝑛.𝐹𝑛)(𝑥) = 𝐹𝑛(𝐴−1
𝑛 (𝑥))

≥ 𝐹𝑛(𝑦−)
> 𝐺(𝑦−) − 𝜀

4
≥ 𝐺(𝐵−1(𝑥)) − 𝜀

2 − 𝜀
4

= (𝐵.𝐺)(𝑥) − 3𝜀
4

> (𝐵.𝐺)(𝑥) + 𝜀,

which together yield ∣(𝐴𝑛.𝐹𝑛)(𝑥) − (𝐵.𝐺)(𝑥)∣ < 𝜀.
Since 𝑥 was an arbitrary continuity point of 𝐵.𝐺 and 𝜀 > 0 was arbitrary, this proves that

𝐴𝑛.𝐹 d⟶ 𝐵.𝐺.
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Chapter 2

Extreme value distributions

2.1 Definition of extreme value distributions
Lemma 1.9 motivates the following definition.

Definition 2.1. A c.d.f. 𝐺 is said to be an extreme value distribution if 𝐺 is nondegenerate
and there exists a c.d.f. 𝐹 and a sequence (𝐴𝑛)𝑛∈ℕ of orientation preserving affine isomorphisms
𝐴𝑛 ∈ Aff+ℝ , such that for every continuity point 𝑥 ∈ ℝ of 𝐺 we have

lim
𝑛→∞

((𝐴𝑛.𝐹 )(𝑥))𝑛 = 𝐺(𝑥).

Lemma 2.2. Let 𝐺 be an extreme value distribution and and 𝐴 ∈ Aff+ℝ an orientation preserving
affine isomorphism. Then also 𝐴.𝐺 is an extreme value distribution.

Proof. Straightforward using Lemmas 1.14 and 1.13.

2.2 Three types of extreme value distributions
Definition 2.3. The standard Gumbel distribution is the c.d.f. Λ given by

Λ(𝑥) = exp ( − exp(−𝑥)).

(In the parametrization of extreme value distribution types by one index 𝛾 ∈ ℝ, this case
corresponds to 𝛾 = 0.)

Definition 2.4. The standard (reverse) Weibull distribution of parameter 𝛼 > 0 is the c.d.f. Ψ𝛼
given by

Ψ𝛼(𝑥) = {exp ( − (−𝑥)𝛼) for 𝑥 < 0
1 for 𝑥 ≥ 0.

(In the parametrization of extreme value distribution types by one index 𝛾 ∈ ℝ, this case
corresponds to 𝛾 < 0 via 𝛾 = −1/𝛼.)

7



Definition 2.5. The standard Fréchet distribution of parameter 𝛼 > 0 is the c.d.f. Φ𝛼 given by

Φ𝛼(𝑥) = {0 for 𝑥 ≤ 0
exp ( − 𝑥−𝛼) for 𝑥 > 0.

(In the parametrization of extreme value distribution types by one index 𝛾 ∈ ℝ, this case
corresponds to 𝛾 > 0 via 𝛾 = 1/𝛼.)

Theorem 2.6. The standard Gumbel distribution Λ is an extreme value distribution.

Proof. Set 𝐴𝑛(𝑥) = 𝑥 − log(𝑛) for 𝑛 ∈ ℕ. Then 𝐴−1
𝑛 (𝑥) = 𝑥 + log(𝑛) and for any 𝑛 ≥ 1 and

𝑥 ∈ ℝ we get

((𝐴𝑛.Λ)(𝑥))𝑛 = (Λ(𝑥 + log(𝑛)))𝑛

= ( exp ( − exp(−(𝑥 + log 𝑛))))
𝑛

= exp ( − 𝑛 exp(−𝑥 − log 𝑛))
= exp ( − 𝑛 𝑒−𝑥 𝑒− log 𝑛)
= exp ( − 𝑒−𝑥)
= Λ(𝑥).

Since the above is true for each 𝑛, we in particular have

lim
𝑛→∞

((𝐴𝑛.Λ)(𝑥))𝑛 = Λ(𝑥)

for all 𝑥 ∈ ℝ. Since Λ is also nondegenerate, this shows that it is an extreme value distribution.

Theorem 2.7. For any 𝛼 > 0, the standard Weibull distribution Ψ𝛼 is an extreme value
distribution.

Proof. …

Theorem 2.8. For any 𝛼 > 0, the standard Fréchet distribution Φ𝛼 is an extreme value distri-
bution.

Proof. …

2.3 Equivalent formulations of the limit relation
Lemma 2.9 (Logarithmic version of the limit relation). Let 𝐹 and 𝐺 be c.d.f.s, and (𝐴𝑛)𝑛∈ℕ
a sequence of orientation preserving affine isomorphisms 𝐴𝑛 ∈ Aff+ℝ . Then for any 𝑥 ∈ ℝ such
that 0 < 𝐺(𝑥) < 1, the two conditions

(i) lim
𝑛→∞

((𝐴𝑛.𝐹 )(𝑥))𝑛 = 𝐺(𝑥)
(ii) lim

𝑛→∞
𝑛 log 𝐹(𝐴−1

𝑛 (𝑥)) = log 𝐺(𝑥)

are equivalent.
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Proof. Recall that (𝐴𝑛.𝐹 )(𝑥) = 𝐹(𝐴−1
𝑛 (𝑥)). Then just take logarithms (and use continuity) to

get from (i) to (ii), and take exponentials (and use continuity) to get from (ii) to (i).

Lemma 2.10 (Relation implies 𝐹 tending to one). Let 𝐹 and 𝐺 be c.d.f.s, and (𝐴𝑛)𝑛∈ℕ a
sequence of orientation preserving affine isomorphisms 𝐴𝑛 ∈ Aff+ℝ . Then for any 𝑥 ∈ ℝ such that
0 < 𝐺(𝑥) < 1, if

(i) lim
𝑛→∞

((𝐴𝑛.𝐹 )(𝑥))𝑛 = 𝐺(𝑥)

holds, then necessarily

lim
𝑛→∞

𝐹(𝐴−1
𝑛 (𝑥)) = 1.

Proof. Otherwise (𝐹(𝐴−1
𝑛 (𝑥)))𝑛 would have 0 ≠ 𝐺(𝑥) as an accumulation point, contradicting

the assumed limit (i).
To wit, if for some 𝛿 > 0 we would have 𝐹(𝐴−1

𝑛 (𝑥)) ≤ 1 − 𝛿 for infinitely many 𝑛, then
0 ≤ (𝐹(𝐴−1

𝑛 (𝑥)))𝑛 ≤ (1 − 𝛿)𝑛 for those 𝑛, and since (1 − 𝛿)𝑛 → 0, we would get (𝐹(𝐴−1
𝑛 (𝑥)))𝑛 →

0 ≠ 𝐺(𝑥) along the subsequence of those 𝑛; a contradiction.

Lemma 2.11 (Taylor expansion limit modification). Let 𝑆 ⊂ ℝ be a subset with 0 ∈ 𝑆, and let
𝑓1, 𝑓2 ∶ 𝑆 → ℝ be functions. Let also (𝑡𝑛)𝑛∈ℕ be a sequence in 𝑆, and let (𝑚𝑛)𝑛∈ℝ be a sequence
of real numbers tending to infinity, lim𝑛→∞ 𝑚𝑛 = +∞. Assume that for 𝑗 = 1, 2

• 𝑓𝑗(0) = 0;

• the derivative 𝑓 ′
𝑗(0) exists (derivative taken within the set 𝑆)

Assume further about 𝑗 = 1 that

• 𝑓 ′
1(0) ≠ 0;

• the limit lim𝑛→∞ (𝑚𝑛 𝑓1(𝑡𝑛)) exists;

• for any 𝛿 > 0 there exists an 𝜀 > 0 such that if |𝑓1(𝑡)| < 𝜀 (with 𝑡 ∈ 𝑆) then |𝑡| < 𝛿.

Denote 𝑐 = 1
𝑓′

1(0) lim𝑛→∞ (𝑚𝑛 𝑓1(𝑡𝑛)). Then we have lim𝑛→0 𝑡𝑛 = 0 and

lim
𝑛→∞

(𝑚𝑛 𝑓2(𝑡𝑛)) = 𝑐 𝑓 ′
2(0).

Proof. This is in principle straightforward: the assumptions are first checked to imply that
lim𝑛→0 𝑡𝑛 = 0, and then one can just consider the first order Taylor expansions of the functions
𝑓𝑗 at 0 given by the assumed existence of the derivatives (the key is 𝑡𝑛 = 𝑐

𝑚𝑛
+ 𝔬( 1

𝑚𝑛
)).

Lemma 2.12 (Taylored version of the limit relation). Let 𝐹 and 𝐺 be c.d.f.s, and (𝐴𝑛)𝑛∈ℕ a
sequence of orientation preserving affine isomorphisms 𝐴𝑛 ∈ Aff+ℝ . Then for any 𝑥 ∈ ℝ such that
0 < 𝐺(𝑥) < 1, the two conditions

(ii) lim
𝑛→∞

𝑛 log 𝐹(𝐴−1
𝑛 (𝑥)) = log 𝐺(𝑥)

(iii) lim
𝑛→∞

(𝑛 (1 − 𝐹(𝐴−1
𝑛 (𝑥)))) = − log 𝐺(𝑥)

are equivalent.
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Proof. Both implications (ii) ⇒ (iii) and (iii) ⇒ (ii) are proven similarly using Lemma 2.11.
Assume (ii). Let 𝑓1(𝑡) = − log(1 − 𝑡) and 𝑓2(𝑡) = 𝑡 and 𝑆 = [0, 1) ⊂ ℝ, and 𝑚𝑛 = 𝑛 and

𝑡𝑛 = 1 − 𝐹(𝐴−1
𝑛 (𝑥)). It is straightforward to check the assumptions of Lemma 2.11, with

𝑓 ′
1(0) = d

d𝑡 ∣
𝑡=0

( − log(1 − 𝑡)) = 1

and 𝑓 ′
2(0) = id′(0) = 1. The key assumption about the existence of the limit lim𝑛→∞ (𝑚𝑛 𝑓1(𝑡𝑛))

is given by (ii), and the conclusion is (iii).
Similarly assuming (iii) we derive (ii) with Lemma 2.11 just interchanging the roles of the

two functions, i.e., now using 𝑓1(𝑡) = 𝑡 and 𝑓2(𝑡) = − log(1 − 𝑡) instead.

Lemma 2.13 (Inverted Taylored version of the limit relation). Let 𝐹 and 𝐺 be c.d.f.s, and
(𝐴𝑛)𝑛∈ℕ a sequence of orientation preserving affine isomorphisms 𝐴𝑛 ∈ Aff+ℝ . Then for any
𝑥 ∈ ℝ such that 0 < 𝐺(𝑥) < 1, the two conditions

(iii) lim
𝑛→∞

(𝑛 (1 − 𝐹(𝐴−1
𝑛 (𝑥)))) = − log 𝐺(𝑥)

(iv) lim
𝑛→∞

1
𝑛 (1 − 𝐹(𝐴−1𝑛 (𝑥))) = 1

− log 𝐺(𝑥)

are equivalent.

Proof. By assumption 𝐺(𝑥) ∈ (0, 1) we have − log 𝐺(𝑥) > 0.
The implication (iii) ⇒ (iv) can therefore be seen by applying 𝑡 ↦ 1

𝑡 and using its continuity
at 𝑡 = − log 𝐺(𝑥), and the converse implication (iv) ⇒ (iii) similarly by using continuity of
𝑡 ↦ 1

𝑡 at 𝑡 = 1
− log 𝐺(𝑥) .

Lemma 2.14 (Transformed version of the limit relation). Let 𝐹 and 𝐺 be c.d.f.s, and (𝐴𝑛)𝑛∈ℕ
a sequence of orientation preserving affine isomorphisms 𝐴𝑛 ∈ Aff+ℝ . Then for any 𝑥 ∈ ℝ such
that 0 < 𝐺(𝑥) < 1, the two conditions

(iv) lim
𝑛→∞

1
𝑛 (1 − 𝐹(𝐴−1𝑛 (𝑥))) = 1

− log 𝐺(𝑥)

(v) lim
𝑛→∞

1
𝑛

1
1 − 𝐴𝑛.𝐹

(𝑥) = 1
l̃og(1/𝐺)

(𝑥)

are equivalent.
(See Definitions 5.3 and 5.5 for the transforms involved in condition (v)).

Proof. This is in principle straightforward, although certain cases need to be checked separately
and the continuity of various natural extensions need to addressed.

Theorem 2.15 (Equivalent versions of the limit relation). Let 𝐹 and 𝐺 be c.d.f.s, and (𝐴𝑛)𝑛∈ℕ
a sequence of orientation preserving affine isomorphisms 𝐴𝑛 ∈ Aff+ℝ . Then for any 𝑥 ∈ ℝ such
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that 0 < 𝐺(𝑥) < 1, the conditions

(i) lim
𝑛→∞

((𝐴𝑛.𝐹 )(𝑥))𝑛 = 𝐺(𝑥)
(ii) lim

𝑛→∞
𝑛 log 𝐹(𝐴−1

𝑛 (𝑥)) = log 𝐺(𝑥)

(iii) lim
𝑛→∞

(𝑛 (1 − 𝐹(𝐴−1
𝑛 (𝑥)))) = − log 𝐺(𝑥)

(iv) lim
𝑛→∞

1
𝑛 (1 − 𝐹(𝐴−1𝑛 (𝑥))) = 1

− log 𝐺(𝑥)

(v) lim
𝑛→∞

1
𝑛

1
1 − 𝐴𝑛.𝐹

(𝑥) = 1
l̃og(1/𝐺)

(𝑥)

are equivalent.
(See Definitions 5.3 and 5.5 for the transforms involved in condition (v)).
(More equivalent conditions are to be added; this is just a theorem to collect various equivalent

phrasings.)

Proof. This is just a combination of earlier results.
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Chapter 3

Classification of extreme value
distributions

3.1 Auxiliary classification I
Lemma 3.1 (Second order differential equation for Q). Suppose that

𝑄∶ ℝ → ℝ

is differentiable and satisfies

𝑄(0) = 0 and 𝑄′(0) = 1

and

𝑄(ℎ + 𝑠) = 𝑄(ℎ)𝛼(𝑠) + 𝑄(𝑠)

for some 𝛼∶ ℝ → ℝ and every 𝑠, ℎ ∈ ℝ. Then 𝑄 is twice continuously differentiable and satisfies

𝑄″(𝑠) = 𝑄′(𝑠) 𝑄″(0) for every 𝑠 ∈ ℝ. (3.1)

Proof. Note first that the equation implies (rearranging and dividing by ℎ), for any 𝑠 and ℎ ≠ 0,

𝑄(ℎ + 𝑠) − 𝑄(𝑠)
ℎ = 𝑄(ℎ)

ℎ 𝛼(𝑠).

Taking the limit as ℎ → 0 and using 𝑄(0) = 0 yields 𝑄′(𝑠) = 𝑄′(0) 𝛼(𝑠) = 𝛼(𝑠), where we also
took into account 𝑄′(0) = 1. Therefore necessarily 𝛼 = 𝑄′, and the equation can be rewritten
in the form

𝑄(ℎ + 𝑠) = 𝑄(ℎ) 𝑄′(𝑠) + 𝑄(𝑠) for 𝑠, ℎ ∈ ℝ.

Rearranging the equation, we find

𝑄(ℎ + 𝑠) − 𝑄(𝑠) = 𝑄(ℎ) 𝑄′(𝑠)

and interchanging the role of 𝑠 and ℎ also

𝑄(ℎ + 𝑠) − 𝑄(ℎ) = 𝑄(𝑠) 𝑄′(ℎ).

12



Subtracting the last two equations yields

𝑄(𝑠) − 𝑄(ℎ) = 𝑄(𝑠) 𝑄′(ℎ) − 𝑄(ℎ) 𝑄′(𝑠),

which by rearranging and dividing by ℎ ≠ 0 yields

𝑄(ℎ)
ℎ (𝑄′(𝑠) − 1) = 𝑄(𝑠)𝑄′(ℎ) − 1

ℎ .

Taking the limit ℎ → 0, recalling 𝑄(0) = 1 and 𝑄′(0) = 1, gives the existence of the second
derivative 𝑄″(0) and the equation

𝑄′(𝑠) − 1 = 𝑄(𝑠)𝑄″(0).

Solving 𝑄′(𝑠) = 1 + 𝑄″(0) 𝑄(𝑠) and recalling that 𝑄 is differentiable shows that 𝑄′ is also
differentiable, so 𝑄 is indeed twice differentiable. Differentiating, we get the asserted equation

𝑄″(𝑠) = 𝑄′(𝑠) 𝑄″(0).

Since 𝑄′ is differentiable and in particular continuous, this also shows that 𝑄″ is continuous, i.e.,
that 𝑄 is twice continuously differentiable.

Lemma 3.2 (Solution for Q). Suppose that 𝑄∶ ℝ → ℝ is twice continuously differentiable and
𝑄′ is positive and 𝑄 and satisfies 𝑄(0) = 0, 𝑄′(0) = 1, and the equation concluded in Lemma 3.1
with 𝛾 = 𝑄″(0), i.e.,

𝑄″(𝑠) = 𝛾 𝑄′(𝑠) for every 𝑠 ∈ ℝ. (3.2)

Then 𝑄 is given by

𝑄(𝑠) = {
𝑒𝛾𝑠−1

𝛾 if 𝛾 ≠ 0
𝑠 if 𝛾 = 0 for 𝑠 ∈ ℝ.

Proof. Since 𝑄 is differentiable and 𝑄′(𝑠) > 0 for any 𝑠 ∈ ℝ, we can write (3.2) as

d
d𝑠 log 𝑄′(𝑠) = 𝑄″(𝑠)

𝑄′(𝑠) = 𝛾.

Integrating and noting log 𝑄′(0) = log 1 = 0, this yields log 𝑄′(𝑠) = 𝛾𝑠 for all 𝑠 ∈ ℝ, or equiv-
alently 𝑄′(𝑠) = 𝑒𝛾𝑠. Integrating a second time and noting 𝑄(0) = 0, this yields the desired
formulas in the two cases 𝛾 ≠ 0 and 𝛾 = 0, respectively, as follows.

If 𝛾 ≠ 0, then we get

𝑄(𝑠) = ∫
𝑠

0
𝑒𝛾𝑢 d𝑢 = 𝑒𝛾𝑠 − 1

𝛾 .

If 𝛾 = 0, then we get

𝑄(𝑠) = ∫
𝑠

0
𝑒0 d𝑢 = 𝑠.
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Theorem 3.3 (Monotone functions are a.e. differentiable). If 𝑓 ∶ ℝ → ℝ is nondecreasing, then
the derivative 𝑓 ′(𝑥) exists at almost every 𝑥 ∈ ℝ. In particular there exists points 𝑥 where 𝑓 ′(𝑥)
exists.
Proof. (The proof is already in Mathlib.)

Lemma 3.4 (Solution for E). Suppose that 𝐸 ∶ (0, ∞) → ℝ is nondecreasing and nonconstant
function which satisfies 𝐸(1) = 0 and

𝐸(𝜆𝜎) = 𝐸(𝜆)𝐴(𝜎) + 𝐸(𝜎)
for some 𝐴∶ (0, ∞) → (0, ∞) and all 𝜆, 𝜎 > 0. Then, denoting 𝑐 = 𝐸′(1) and 𝛾 = 1

𝐸′(1)
d2
d𝑠2 𝐸(𝑒𝑠)∣𝑠=0,

for all 𝜆 ∈ ℝ we have

𝐸(𝜆) = {𝑐(𝜆𝛾 − 1) if 𝛾 ≠ 0.
𝑐 log(𝜆) if 𝛾 = 0.

Proof. Denote 𝐻(𝑠) = 𝐸(𝑒𝑠) for 𝑠 ∈ ℝ. Then 𝐻(0) = 𝐸(1) = 0 and 𝐻 is also nondecreasing and
nonconstant. By Theorem 3.3, there exists some 𝑠0 ∈ ℝ such that the derivative 𝐻′(𝑠0) exists.

The equation for 𝐸 yields an equation for 𝐻,
𝐻(ℎ + 𝑠) = 𝐻(ℎ)𝐴(𝑒𝑠) + 𝐻(𝑠) for any 𝑠, ℎ ∈ ℝ.

We can rearrange this equation and divide by ℎ, and we get for any 𝑠, ℎ ∈ ℝ, ℎ ≠ 0,
𝐻(ℎ + 𝑠) − 𝐻(𝑠)

ℎ = 𝐻(ℎ)
ℎ 𝐴(𝑒𝑠).

If 𝑠 = 𝑠0, then the LHS tends to 𝐻′(𝑠0) as ℎ → 0. The RHS must therefore also have a limit
as 𝑠 → 0, and observing that 𝐻(ℎ)

ℎ = 𝐻(ℎ)−𝐻(0)
ℎ , that limit is 𝐻′(0)𝐴(𝑒𝑠0), which shows that

the derivative 𝐻′(0) exists. Then applying the same equation at general 𝑠 ∈ ℝ shows that
𝐻′(𝑠) = 𝐻′(0)𝐴(𝑒𝑠) must exist, so 𝐻 ∶ ℝ → ℝ is in fact everywhere differentiable.

Note that we must have 𝐻′(0) > 0, because if 𝐻′(0) = 0 then by the above equation
𝐻′(𝑠) = 0 for every 𝑠 and then 𝐻 is a constant function, which is a contradiction. Denote
𝑐 = 𝐻′(0) = d

d𝑠 𝐸(𝑒𝑠)∣𝑠=0 = 𝐸′(1).
Also the equation and positivity of the function 𝐴 give 𝐻′(𝑠) > 0 for all 𝑠.
Now consider 𝑄(𝑠) = 𝐻(𝑠)

𝑐 . This 𝐻 is obviously also differentiable, since 𝐻 is. The equation
for 𝐻 yields the following equation for 𝑄,

𝑄(ℎ + 𝑠) = 𝑄(ℎ)𝛼(𝑠) + 𝑄(𝑠) for any 𝑠, ℎ ∈ ℝ,
where 𝛼(𝑠) = 𝐴(𝑒𝑠). By Lemma 3.1 𝑄 is then twice continuously differentiable and satisfies

𝑄′(𝑠)𝑄″(0) = 𝑄″(𝑠) for all 𝑠 ∈ ℝ. (3.3)
By Lemma 3.2 we then get a formula for 𝑄, which involves

𝛾 = 𝑄″(0) = 𝐻″(0)
𝑐 = 1

𝑐
d2

d𝑠2 𝐸(𝑒𝑠)∣𝑠=0.

If 𝛾 ≠ 0 then the formula reads 𝑄(𝑠) = 𝑒𝛾𝑠−1
𝛾 . Now just tracing the definitions, we get the

asserted formula
𝐸(𝜆) = 𝐻(log 𝜆) = 𝑐 𝑄(log 𝜆) = 𝑐 (𝑒𝛾 log(𝜆) − 1) = 𝑐 (𝜆𝛾 − 1).

If 𝛾 = 0 then the formula reads 𝑄(𝑠) = 𝑠. Now just tracing the definitions, we get instead
𝐸(𝜆) = 𝐻(log 𝜆) = 𝑐 𝑄(log 𝜆) = 𝑐 log(𝜆),

and the proof is complete.
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3.2 Inverting to recover a cumulative distribution function
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Chapter 4

Convergence in distribution with
cdfs

This chapter provides a standard characterization of convergence in distribution (weak conver-
gence of probability measures) on the real line in terms of cumulative distribution functions.

4.1 Convergence in distribution
Convergence in distribution for random variables can be defined when the random variables take
values in a topological space, and it amounts to the weak convergence of the probability measures
that are the laws of those random variables. In the special case of real-valued random variables,
or probability measures on the real line, the definition reads:
Definition 4.1 (Weak convergence of probability measures). A sequence (𝜇𝑛)𝑛∈ℕ of Borel prob-
ability measures on ℝ converges weakly to a Borel probability measure 𝜇 on ℝ if for all bounded
continuous functions 𝑓 ∶ ℝ → [0, +∞) we have

lim
𝑛→∞

∫
ℝ

𝑓(𝑥) d𝜇𝑛(𝑥) = ∫
ℝ

𝑓(𝑥) d𝜇(𝑥).

4.2 Auxiliary results
Lemma 4.2 (Monotone real functions have only countably many points of discontinuity). A
monotone function 𝑓 ∶ ℝ → ℝ can have at most countably many points of discontinuity. In
particular the set 𝐷 ⊂ ℝ of continuity points of 𝑓 is dense in ℝ.
Proof. (The proof should already be in Mathlib.)

Lemma 4.3 (Tightness of a cumulative distribution function). Let 𝐹 be a cumulative distribution
function. Then for any 𝜀 > 0 there exists points 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 such that 𝐹(𝑏)−𝐹(𝑎) > 1−𝜀
and 𝐹 is continuous at the points 𝑎 and 𝑏.
Proof. Cumulative distribution functions satisfy 𝐹(𝑥) ↓ 0 as 𝑥 ↓ −∞ and 𝐹(𝑥) ↑ 1 as 𝑥 ↑ +∞.
The required large difference 𝐹(𝑏)−𝐹(𝑎) is obtained by choosing 𝑎 small enough so that 𝐹(𝑎) < 𝜀

2
and 𝑏 large enough so that 𝐹(𝑏) > 1 − 𝜀

2 . In order to guarantee that 𝑎 < 𝑏 and that 𝑎 and 𝑏 are
continuity points of 𝐹 , we recall that continuity points of the monotone function 𝐹 are dense by
Lemma 4.2, so we may decrease 𝑎 and increase 𝑏 as appropriate.
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Lemma 4.4 (Subdivision with small mesh and within dense set). Let 𝐷 ⊂ ℝ be a dense set and
𝑎, 𝑏 ∈ 𝐷 with 𝑎 < 𝑏. Then for any 𝛿 > 0 there exists a 𝑘 ∈ ℕ and 𝑎 = 𝑐0, 𝑐1, … , 𝑐𝑘−1, 𝑐𝑘 = 𝑏 ∈ 𝐷
such that |𝑐𝑗 − 𝑐𝑗−1| < 𝛿 for all 𝑗 = 1, … , 𝑘.

Proof. …

Lemma 4.5 (Subdivision for continuous function approximation). Let 𝐷 ⊂ ℝ be a dense set,
let 𝑓 ∶ ℝ → ℝ be continuous, let 𝑎, 𝑏 ∈ 𝐷 with 𝑎 < 𝑏, and let 𝜀 > 0. Then there exists a 𝑘 ∈ ℕ
and points 𝑎 = 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑘−1 < 𝑐𝑘 = 𝑏 such that for each 𝑗 = 1, … , 𝑘 we have 𝑐𝑗 ∈ 𝐷 and

∣𝑓(𝑥) − 𝑓(𝑐𝑗)∣ < 𝜀 for 𝑥 ∈ [𝑐𝑗−1, 𝑐𝑗].

Proof. On the compact interval [𝑎, 𝑏] ⊂ ℝ, the continuous function 𝑓 is uniformly continuous,
so for some 𝛿 > 0 we have |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀 whenever |𝑥 − 𝑦| < 𝛿 and 𝑥, 𝑦 ∈ [𝑎, 𝑏]. Now apply
Lemma 4.4 to choose 𝑘 and points 𝑎 = 𝑐0 < 𝑐1 < ⋯ < 𝑐𝑘−1 < 𝑐𝑘 such that 𝑐𝑗 − 𝑐𝑗−1 < 𝛿 and
𝑐𝑗 ∈ 𝐷 for all 𝑗 = 1, … , 𝑘. Now for any 𝑗 = 1, … , 𝑘, since for 𝑥 ∈ [𝑐𝑗−1, 𝑐𝑗] we have |𝑥 − 𝑐𝑗| < 𝛿,
we get

∣𝑓(𝑥) − 𝑓(𝑐𝑗)∣ < 𝜀

as desired.

Lemma 4.6 (Simple function integral as linear combination of cdf differences). Let 𝑎 = 𝑐0 <
𝑐1 < ⋯ < 𝑐𝑘 = 𝑏 and consider the linear combination of indicator functions

ℎ(𝑥) =
𝑘

∑
𝑗=1

𝛼𝑗 𝕀(𝑐𝑗−1,𝑐𝑗](𝑥).

Then the integral of ℎ with respect to a Borel probability measure 𝜇 on ℝ whose can be written as

∫
ℝ

ℎ(𝑥) d𝜇(𝑥) =
𝑘

∑
𝑗=1

𝛼𝑗 (𝐹(𝑐𝑗) − 𝐹(𝑐𝑗−1)),

where 𝐹 is the c.d.f. of 𝜇.

Proof.

∫
ℝ

ℎ d𝜇 = ∫
ℝ

(
𝑘

∑
𝑗=1

𝛼𝑗 𝕀(𝑐𝑗−1,𝑐𝑗](𝑥)) d𝜇(𝑥)

=
𝑘

∑
𝑗=1

𝛼𝑗 ∫
ℝ

𝕀(𝑐𝑗−1,𝑐𝑗](𝑥) d𝜇(𝑥)

=
𝑘

∑
𝑗=1

𝛼𝑗 𝜇[(𝑐𝑗−1, 𝑐𝑗]]

=
𝑘

∑
𝑗=1

𝛼𝑗 (𝐹𝑛(𝑐𝑗) − 𝐹𝑛(𝑐𝑗−1))
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Lemma 4.7 (One of the portmanteau implications). Weak convergence of probability measures
implies that if the boundary of a Borel set carries no probability mass under the limit measure,
then the limit of the measures of the set equals the measure of the set under the limit probability
measure.

In other words, if lim𝑛→∞ 𝜇𝑛 = 𝜇 in the sense of weak convergence of measures, Definition 4.1,
and if 𝐴 ⊂ ℝ is a Borel set such that 𝜇[𝜕𝐴] = 0, then

lim
𝑛→∞

𝜇𝑛[𝐴] = 𝜇[𝐴].

Proof. (The proof is in Mathlib.)

4.3 Convergence in distribution from pointwise convergence
of cdfs

Theorem 4.8 (Sufficient condition for convergence in distribution with cdfs). Let 𝐹 and 𝐹𝑛,
𝑛 ∈ ℕ, be cumulative distribution functions of probability measures 𝜇 and 𝜇𝑛, 𝑛 ∈ ℕ, respectively,
i.e.,

𝐹(𝑥) = 𝜇[(−∞, 𝑥]] for 𝑥 ∈ ℝ
𝐹𝑛(𝑥) = 𝜇𝑛[(−∞, 𝑥]] for 𝑥 ∈ ℝ and 𝑛 ∈ ℕ.

If lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥) for all continuity points 𝑥 of 𝐹 , then lim𝑛→∞ 𝜇𝑛 = 𝜇 in the sense of
weak convergence of measures, Definition 4.1.

Proof. Let 𝐷 ⊂ ℝ denote the set of continuity points of 𝐹 . By Lemma 4.2, 𝐷 is dense in ℝ.
Assume that lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥) for all 𝑥 ∈ 𝐷.

Let 𝜀 > 0. Choose, by Lemma 4.3, points 𝑎, 𝑏 ∈ 𝐷, 𝑎 < 𝑏, such that 𝐹(𝑏) − 𝐹(𝑎) > 1 − 𝜀.
Observe also that since lim𝑛→∞ 𝐹𝑛(𝑎) = 𝐹(𝑎) and lim𝑛→∞ 𝐹𝑛(𝑏) = 𝐹(𝑏), there exists some

𝑁1 such that we have

𝐹𝑛(𝑏) − 𝐹𝑛(𝑎) > 1 − 2𝜀 for all 𝑛 ≥ 𝑁1.

Let 𝑓 ∶ ℝ → ℝ be bounded and continuous. By Lemma 4.5 we can choose points 𝑎 = 𝑐0 <
𝑐1 < ⋯ < 𝑐𝑘−1 < 𝑐𝑘 = 𝑏 such that for all 𝑗 = 1, … , 𝑘 we have 𝑐𝑗 ∈ 𝐷 and

∣𝑓(𝑥) − 𝑓(𝑐𝑗)∣ < 𝜀 for 𝑥 ∈ [𝑐𝑗−1, 𝑐𝑗].

Define the simple function ℎ∶ ℝ → ℝ by

ℎ(𝑥) =
𝑘

∑
𝑗=1

𝑓(𝑐𝑗) 𝕀(𝑐𝑗−1,𝑐𝑗](𝑥)

The above estimate shows that |𝑓(𝑥) − ℎ(𝑥)| < 𝜀 for all 𝑥 ∈ [𝑎, 𝑏]. By boundedness of 𝑓 , there
exists a constant 𝐾 > 0 such that |𝑓(𝑥)| ≤ 𝐾 for all 𝑥 ∈ ℝ. Since ℎ vanishes outside (𝑎, 𝑏], the
triangle inequality for integral with respect to 𝜇𝑛 gives

∣ ∫
ℝ

𝑓 d𝜇𝑛 − ∫
ℝ

ℎ d𝜇𝑛∣ ≤ ∫
(𝑎,𝑏]

|𝑓 − ℎ| d𝜇𝑛
⏟⏟⏟⏟⏟⏟⏟

≤𝜀

+ ∫
ℝ∖(𝑎,𝑏]

|𝑓| d𝜇𝑛
⏟⏟⏟⏟⏟⏟⏟
≤𝐾 𝜇𝑛[ℝ∖(𝑎,𝑏]]

.
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When 𝑛 ≥ 𝑁1, we have 𝜇𝑛[ℝ ∖ (𝑎, 𝑏]] = 1 − 𝜇𝑛[(𝑎, 𝑏]] = 1 − (𝐹𝑛(𝑏) − 𝐹𝑛(𝑎)) < 2𝜀, and thus the
triangle inequality implies

∣ ∫
ℝ

𝑓 d𝜇𝑛 − ∫
ℝ

ℎ d𝜇𝑛∣ ≤ 𝜀 + 𝐾 2𝜀 = (1 + 2𝐾) 𝜀.

Similarly, integrating now with respect to 𝜇 instead, one shows that

∣ ∫
ℝ

𝑓 d𝜇 − ∫
ℝ

ℎ d𝜇∣ ≤ (1 + 𝐾) 𝜀.

It remains to consider the integrals of the function ℎ with respect to both 𝜇𝑛 and 𝜇. By
Lemma 4.6, these integrals are expressible in terms of the cumulative distribution functions,

∫
ℝ

ℎ d𝜇𝑛 =
𝑘

∑
𝑗=1

𝑓(𝑐𝑗) (𝐹𝑛(𝑐𝑗) − 𝐹𝑛(𝑐𝑗−1))

and

∫
ℝ

ℎ d𝜇 =
𝑘

∑
𝑗=1

𝑓(𝑐𝑗) (𝐹(𝑐𝑗) − 𝐹(𝑐𝑗−1)).

The difference of the integrals of ℎ with respect to these two can therefore be estimated as

∣ ∫
ℝ

ℎ d𝜇 − ∫
ℝ

ℎ d𝜇𝑛∣ = ∣
𝑘

∑
𝑗=1

𝑓(𝑐𝑗) (𝐹(𝑐𝑗) − 𝐹𝑛(𝑐𝑗) − 𝐹(𝑐𝑗−1) + 𝐹𝑛(𝑐𝑗−1))∣

≤
𝑘

∑
𝑗=1

|𝑓(𝑐𝑗)| (∣𝐹(𝑐𝑗) − 𝐹𝑛(𝑐𝑗)∣ + ∣𝐹(𝑐𝑗−1) + 𝐹𝑛(𝑐𝑗−1)∣)

≤ 2𝑘𝐾 max
𝑗=0,…,𝑘

∣𝐹 (𝑐𝑗) − 𝐹𝑛(𝑐𝑗)∣.

By our assumption (ii), we have lim𝑛→∞ 𝐹𝑛(𝑐𝑗) = 𝐹(𝑐𝑗) for each 𝑗 = 1, … , 𝑘, so there exists 𝑁2
such that for 𝑛 ≥ 𝑁2 we have max𝑗=1,…,𝑘 |𝐹 (𝑐𝑗) − 𝐹𝑛(𝑐𝑗)| < 𝜀

𝑘 , and thus

∣ ∫
ℝ

ℎ d𝜇 − ∫
ℝ

ℎ d𝜇𝑛∣ ≤ 2𝐾𝜀.

Combining the estimates we have obtained, for 𝑛 ≥ max(𝑁1, 𝑁2), we have

∣ ∫
ℝ

𝑓 d𝜇 − ∫
ℝ

𝑓 d𝜇𝑛∣

≤ ∣ ∫
ℝ

𝑓 d𝜇 − ∫
ℝ

ℎ d𝜇∣
⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤(1+𝐾)𝜀

+ ∣ ∫
ℝ

ℎ d𝜇 − ∫
ℝ

ℎ d𝜇𝑛∣
⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤2𝐾𝜀

+ ∣ ∫
ℝ

ℎ d𝜇𝑛 − ∫
ℝ

𝑓 d𝜇𝑛∣
⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤(1+2𝐾)𝜀

≤ (2 + 5𝐾)𝜀.

Since 𝜀 > 0 was arbitrary, this shows that ∫ 𝑓 d𝜇𝑛 → ∫ 𝑓 d𝜇 as 𝑛 → ∞, so we have established
the weak convergence 𝜇𝑛 → 𝜇 according to Definition 4.1.
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Lemma 4.9 (Necessary condition for convergence in distribution with cdfs). Let 𝜇 and 𝜇𝑛,
𝑛 ∈ ℕ, be Borel probability measures on ℝ, and let 𝐹 and 𝐹𝑛, 𝑛 ∈ ℕ, be their cumulative
distribution functions, respectively, i.e.,

𝐹(𝑥) = 𝜇[(−∞, 𝑥]] for 𝑥 ∈ ℝ
𝐹𝑛(𝑥) = 𝜇𝑛[(−∞, 𝑥]] for 𝑥 ∈ ℝ and 𝑛 ∈ ℕ.

If lim𝑛→∞ 𝜇𝑛 = 𝜇 in the sense of weak convergence of measures, Definition 4.1, then for all
continuity points 𝑥 of 𝐹 we have lim𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥).
Proof. Let 𝑥 ∈ ℝ be a continuity point of 𝐹 . Then we have 𝜇[{𝑥}] = 0, by Lemma 1.15. Note
that the boundary of the Borel set (−∞, 𝑥] ⊂ ℝ is the singleton 𝜕(−∞, 𝑥] = {𝑥}. Therefore the
assumption lim𝑛→∞ 𝜇𝑛 = 𝜇 implies that

𝜇𝑛[(−∞, 𝑥]] → 𝜇[(−∞, 𝑥]],

by a general fact (Lemma 4.7) about weakly converging sequences of measures that a for Borel
sets whose boundary carries no mass in the limit measure. In terms of the c.d.f.s, the above
reads

𝐹𝑛(𝑥) → 𝐹(𝑥)

as asserted.
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Chapter 5

Transforms of cumulative
distribution functions

In this part, we introduce certain transforms and extensions of cumulative distribution functions,
which are used in the classification calculation of the extreme value distributions.

5.1 Extended cumulative distribution function
Definition 5.1 (Extended cumulative distribution function). The extension 𝐹 of a c.d.f. 𝐹 is
the function

𝐹 ∶ [−∞, +∞] → [0, 1]

given by

𝐹(𝑥) =
⎧{
⎨{⎩

0 if 𝑥 = −∞
𝐹(𝑥) if − ∞ < 𝑥 < +∞
1 if 𝑥 = +∞.

Lemma 5.2 (Continuity points of extended c.d.f.). The extension 𝐹 of a c.d.f. 𝐹 is continuous
at 𝑥 = −∞, 𝑥 = +∞, and at any 𝑥 ∈ (−∞, +∞) where 𝐹 is continuous.

Proof. Since lim𝑥→+∞ 𝐹(𝑥) = 1 by properties of c.d.f.s and 𝐹(+∞) = 1 by definition of the
extension, continuity at 𝑥 = +∞ follows. Continuity at 𝑥 = −∞ is similar.

Suppose 𝐹 is continuous at 𝑥 ∈ ℝ. Then since 𝐹 coincides with 𝐹 in a neighborhood of 𝑥
(indeed on the open set ℝ ⊊ [−∞, +∞]), the continuity of 𝐹 at 𝑥 ∈ ℝ implies continuity of 𝐹 at
𝑥.

5.2 One over one minus cumulative distribution function
Definition 5.3 (One over one minus cumulative distribution function). The transform 1

1−𝐹 of
a c.d.f. 𝐹 is the function

1
1 − 𝐹

∶ [−∞, +∞] → [1, +∞]
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given by

1
1 − 𝐹

(𝑥) =
⎧{
⎨{⎩

1 if 𝐹(𝑥) = 0
1

1−𝐹(𝑥) if 0 < 𝐹(𝑥) < 1
+∞ if 𝐹(𝑥) = 1,

where 𝐹 ∶ [−∞, +∞] → [0, 1] is the extension of the c.d.f. 𝐹 .

Lemma 5.4 (Continuity points of one over one minus c.d.f.). The transform 1
1−𝐹 of a c.d.f. 𝐹

is continuous at 𝑥 = −∞, 𝑥 = +∞, and at any 𝑥 ∈ (−∞, +∞) where 𝐹 is continuous.

Proof. Since lim𝑥→+∞ 𝐹(𝑥) = 𝐹(+∞) = 1 by Lemma 5.2 and the continuous extension of
𝑝 ↦ 1

1−𝑝 to a function [0, 1] → [0, +∞] tends to +∞ as 𝑝 → 1, we have

lim
𝑥→+∞

1
1 − 𝐹

(𝑥) = +∞ = 1
1 − 𝐹

(+∞).

Therefore 1
1−𝐹 is continuous at +∞. Continuity at −∞ similarly follows from lim𝑥→−∞ 𝐹(𝑥) =

𝐹(−∞) = 0 and 1
1−𝑝 tending to 1 as 𝑝 → 0, which give

lim
𝑥→−∞

1
1 − 𝐹

(𝑥) = 1 = 1
1 − 𝐹

(−∞).

Suppose 𝐹 is continuous at 𝑥 ∈ ℝ, and recall from Lemma 5.2 that 𝐹 is then also continuous
at 𝑥. Now 1

1−𝐹 is a composition of the continuous function 𝑝 ↦ 1
1−𝑝 ∶ [0, 1] → [0, +∞] with 𝐹 ,

and as such also becomes continuous at 𝑥.

5.3 One over negative logarithm cumulative distribution
function

Definition 5.5 (One over negative logarithm cumulative distribution function). The transform
1

l̃og(1/𝐹) of a c.d.f. 𝐹 is the function

1
l̃og(1/𝐹)

∶ [−∞, +∞] → [0, +∞]

given by

1
l̃og(1/𝐹)

(𝑥) =
⎧{
⎨{⎩

0 if 𝐹(𝑥) = 0
1

log(1/𝐹(𝑥)) if 0 < 𝐹(𝑥) < 1
+∞ if 𝐹(𝑥) = 1,

where 𝐹 ∶ [−∞, +∞] → [0, 1] is the extension of the c.d.f. 𝐹 .

Lemma 5.6 (Continuity points of one over negative logarithm c.d.f.). The transform 1
l̃og(1/𝐹) of

a c.d.f. 𝐹 is continuous at 𝑥 = −∞, 𝑥 = +∞, and at any 𝑥 ∈ (−∞, +∞) where 𝐹 is continuous.
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Proof. Since lim𝑥→+∞ 𝐹(𝑥) = 𝐹(+∞) = 1 by Lemma 5.2 and the continuous extension of
𝑝 ↦ 1

log(1/𝑝) to a function [0, 1] → [0, +∞] tends to +∞ as 𝑝 → 1, we have

lim
𝑥→+∞

1
l̃og(1/𝐹)

(𝑥) = +∞ = 1
l̃og(1/𝐹)

(+∞).

Therefore 1
l̃og(1/𝐹) is continuous at +∞. Continuity at −∞ similarly follows from lim𝑥→−∞ 𝐹(𝑥) =

𝐹(−∞) = 0 and 1
log(1/𝑝) tending to 0 as 𝑝 → 0, which give

lim
𝑥→−∞

1
l̃og(1/𝐹)

(𝑥) = 0 = 1
l̃og(1/𝐹)

(−∞).

Suppose 𝐹 is continuous at 𝑥 ∈ ℝ, and recall from Lemma 5.2 that 𝐹 is then also continuous
at 𝑥. Now 1

l̃og(1/𝐹) is a composition of the continuous function 𝑝 ↦ 1
log(1/𝑝) ∶ [0, 1] → [0, +∞]

with 𝐹 , and as such also becomes continuous at 𝑥.
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Chapter 6

One-parameter subgroups of
affine isomorphisms

Lemma 6.1 (Functional equation in one parameter subgroups of affine isomorphisms). Suppose
that 𝑡 ↦ 𝐴𝑡 is a homomorphism of multiplicative groups (0, +∞) → Aff+ℝ , i.e., for any 𝑠, 𝑡 > 0
we have

𝐴𝑠𝑡 = 𝐴𝑠 ∘ 𝐴𝑡.

Write 𝐴𝑡(𝑥) = 𝑎𝑡𝑥 + 𝑏𝑡, with 𝑎𝑡 > 0 and 𝑏𝑡 ∈ ℝ. Then we have, for any 𝑠, 𝑡 > 0,

𝑎𝑡𝑠 = 𝑎𝑡 𝑎𝑠 and
𝑏𝑡𝑠 = 𝑎𝑡 𝑏𝑠 + 𝑏𝑡.

(Also by symmetry 𝑏𝑡𝑠 = 𝑎𝑠 𝑏𝑡 + 𝑏𝑠.)

Proof.

Lemma 6.2 (Functional equation scaling coefficient solution). Suppose that 𝑎∶ (0, +∞) →
(0, +∞) is a measurable function satisfying, for any 𝑠, 𝑡 > 0,

𝑎(𝑡𝑠) = 𝑎(𝑡) 𝑎(𝑠).

Then there exists a 𝜌 ∈ ℝ such that for all 𝑡 > 0,

𝑎(𝑡) = 𝑡𝜌.

Proof.

Lemma 6.3 (Functional equation translation coefficient solution with 𝜌 = 0). Suppose that
𝑏 ∶ (0, +∞) → ℝ is a measurable function satisfying, for any 𝑠, 𝑡 > 0,

𝑏(𝑡𝑠) = 𝑏(𝑠) + 𝑏(𝑡).

Then there exists a constant 𝑐 such that for 𝑡 ∈ (0, +∞) we have

𝑏(𝑡) = − 𝑐 log(𝑡).

Proof.
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Lemma 6.4 (Functional equation translation coefficient solution with 𝜌 ≠ 0). Suppose that
𝜌 ∈ ℝ ∖ {0} and 𝑏 ∶ (0, +∞) → ℝ is a measurable function satisfying, for any 𝑠, 𝑡 > 0,

𝑏(𝑡𝑠) = 𝑡𝜌 𝑏(𝑠) + 𝑏(𝑡).

Then there exists a constant 𝑐 such that for 𝑡 ∈ (0, +∞) ∖ {1} we have

𝑏(𝑡) = 𝑐(1 − 𝑡−𝜌).

Proof.

The above solutions to functional equations can be used to classify all one-parameter sub-
groups of the group of oriented affine isomorphisms of ℝ. Such a subgroup can be given in a
parametrized form as a group homomorphism ℝ → Aff+ℝ (from the additive group ℝ) or alterna-
tively as group homomorphisms (0, +∞) → Aff+ℝ (from the multiplicative group (0, +∞)). The
additive and multiplicative versions are related by the change of variable ℝ ∋ 𝑡 ↔ 𝜆 ∶= 𝑒𝑡 ∈
(0, +∞) (conversely, 𝑡 = log(𝜆)). (In Lean the type ℝ is more convenient than the type (0, +∞),
so in formal statements we prefer the former choice.)

Theorem 6.5 (One-parameter subgroups of affine isomorphisms of ℝ). [TODO: Switch to ad-
ditive notation and ℝ rather than multiplicative notation and (0, +∞), to match the most con-
venient formalized statements.]

Suppose that 𝑡 ↦ 𝐴𝑡 is a measurable homomorphism of multiplicative groups (0, +∞) → Aff+ℝ ,
i.e., for any 𝑠, 𝑡 > 0 we have

𝐴𝑠𝑡 = 𝐴𝑠 ∘ 𝐴𝑡

and 𝐴𝑡(𝑥) = 𝑎𝑡𝑥 + 𝑏𝑡, with 𝑡 ↦ 𝑎𝑡 and 𝑡 ↦ 𝑏𝑡 measurable functions. Then either

(0) there exists a 𝛽 ∈ ℝ such that for all 𝑡 > 0 and 𝑥 ∈ ℝ

𝐴𝑡(𝑥) = 𝑥 + 𝛽 log(𝑡);

or

(1) there exists a 𝜌 ≠ 0 and 𝑐 ∈ ℝ such that for all 𝑡 > 0 and 𝑥 ∈ ℝ

𝐴𝑡(𝑥) = 𝑡𝜌(𝑥 − 𝑐) + 𝑐.

Proof.
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Chapter 7

Types

Definition 7.1 (Type (of distribution on ℝ)). Two c.d.f.s 𝐹, 𝐺 are said to be of the same type,
if there exists an order-preserving affine isomorphism 𝐴 ∈ Aff+ℝ such that 𝐺 = 𝐴.𝐹 .

Being of the same type is an equivalence relation, and the equivalence classes are called types
(of distributions on ℝ).

7.1 Convergence to types
The notion of convergence of cumulative distribution functions considered here is always taken
to be pointwise convergence on the set of continuity points of the limit c.d.f. By Theorem 4.8
and Lemma 4.9, this corresponds to convergence in distribution (weak convergence of probability
measures). Below, when we write 𝐹𝑛

d⟶ 𝐹 for c.d.f.s 𝐹𝑛, 𝑛 ∈ ℕ, and 𝐹 , this is always what we
mean.

For affine maps 𝐴∶ ℝ → ℝ, we use the topology of pointwise convergence of functions. Equiv-
alently, convergence of affine maps means the convergence of the coefficients 𝑎, 𝑏 ∈ ℝ in the
expression 𝑥 ↦ 𝑎𝑥 + 𝑏 of the affine functions (so 𝐴𝑛 → 𝐴 if and only if the functions are of the
form 𝐴𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛 and 𝐴(𝑥) = 𝑎𝑥 + 𝑏, and 𝑎𝑛 → 𝑎 and 𝑏𝑛 → 𝑏).
Lemma 7.2 (Unique affine relation among two nondegenerate c.d.f.s). Let 𝐹, 𝐺 be two c.d.f.s of
the same type, and 𝐴 ∈ Aff+ℝ an affine isomorphism such that 𝐺 = 𝐴.𝐹 . If 𝐹 is nondegenerate,
then 𝐴 is the only element of Aff+ℝ for which the relation 𝐺 = 𝐴.𝐹 holds.
Proof. Since 𝐹 is nondegenerate, we can find two different points 𝑥1 < 𝑥2 such that 0 < 𝐹(𝑥1) <
𝐹(𝑥2) ≤ 1. By right continuity of 𝐹 , we can assume these points to be taken minimal with the
given values, i.e., 𝑥𝑗 = inf {𝑥 ∈ ℝ ∣ 𝐹(𝑥) = 𝐹(𝑥𝑗)} for 𝑗 = 1, 2.

The assumption 𝐺 = 𝐴.𝐹 means 𝐺(𝑥) = 𝐹(𝐴−1(𝑥)) for all 𝑥 ∈ ℝ. Therefore 𝐺(𝐴(𝑥1)) =
𝐹(𝑥1) < 𝐹(𝑥2) = 𝐺(𝐴(𝑥2)). We also get 𝐴(𝑥𝑗) = inf {𝑦 ∈ ℝ ∣ 𝐺(𝑦) = 𝐹(𝑥𝑗)} for 𝑗 = 1, 2 by
strict monotonicity and bijectivity of 𝐴 (if, for example, there would exist a 𝑦′

2 < 𝐴(𝑥2) such that
𝐺(𝑦′

2) = 𝐹(𝑥2), then the point 𝑥′
2 = 𝐴−1(𝑦′

2) < 𝑥2 would be such that 𝐹(𝐴−1(𝑦′
2)) = 𝐺(𝑦′

2) =
𝐹(𝑥2), contradicting the minimality of 𝑥2).

If 𝐴 ∈ Aff+ℝ is also such that 𝐺 = 𝐴.𝐹 , then the same holds for it: 𝐴(𝑥𝑗) = inf {𝑦 ∈ ℝ ∣ 𝐺(𝑦) =
𝐹(𝑥𝑗)} for 𝑗 = 1, 2. We conclude that

𝐴(𝑥1) = inf {𝑦 ∈ ℝ ∣ 𝐺(𝑦) = 𝐹(𝑥1)} = 𝐴(𝑥1)
𝐴(𝑥2) = inf {𝑦 ∈ ℝ ∣ 𝐺(𝑦) = 𝐹(𝑥2)} = 𝐴(𝑥2).
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But an affine map of ℝ is determined by its values at two distinct points: from 𝑎𝑥1 + 𝑏 = 𝑦1 and
𝑎𝑥2 + 𝑏 = 𝑦2 with 𝑥1 ≠ 𝑥2 one can solve 𝑎, 𝑏. Therefore we must have 𝐴 = 𝐴.

Lemma 7.3 (Degeneration by shrinking affine transformations). Let (𝐹𝑛)𝑛∈ℕ be a sequence of
c.d.f.s which converges to a c.d.f. 𝐺, 𝐹𝑛

d⟶ 𝐺. Consider affine transformations of the form
𝐴𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛, with 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ, such that 𝑎𝑛 → 0 and 𝑏𝑛 → 𝛽 ∈ ℝ as 𝑛 → ∞. Then
𝐴𝑛.𝐹𝑛

d⟶ 𝐺, where 𝐺 is the degenerate c.d.f. of the delta mass at 𝛽.

Proof. It suffices to prove that for any 𝑥 < 𝛽 we have 𝐺(𝑥) = 0 and for any 𝑥 > 𝛽 we have
𝐺(𝑥) = 1.

Let us focus on the latter, so let 𝑥 > 𝛽. Let also 𝜀 > 0; we will prove that 𝐺(𝑥) > 1 − 𝜀, and
the claim will follow.

By density of continuity points of 𝐺, we can choose 𝑥′ such that 𝛽 < 𝑥′ < 𝑥 and 𝐺 is
continuous at 𝑥′. Then the assumed convergence 𝐴𝑛.𝐹𝑛

d⟶ 𝐺 implies that (𝐴𝑛.𝐹𝑛)(𝑥′) → 𝐺(𝑥′).
Since 𝐺(𝑥) ≥ 𝐺(𝑥′), it suffices to prove that 𝐺(𝑥′) > 1 − 𝜀.

Since 𝐺 is a c.d.f., we can choose a continuity point 𝑧 of 𝐺 large enough so that 𝐺(𝑧) > 1 − 𝜀.
Then by the assumed convergence 𝐹𝑛

d⟶ 𝐺, we have 𝐹𝑛(𝑧) → 𝐺(𝑧). By definition we have

(𝐴𝑛.𝐹𝑛)(𝐴𝑛(𝑧)) = 𝐹𝑛(𝐴−1
𝑛 (𝐴𝑛(𝑧))) = 𝐹𝑛(𝑧) ⟶ 𝐺(𝑧).

Note that 𝐴𝑛(𝑧) = 𝑎𝑛𝑧 + 𝑏𝑛 → 𝛽 as 𝑛 → ∞ by the assumptions 𝑎𝑛 → 0 and 𝑏𝑛 → 𝛽. In
particular, for 𝑛 large enough, we have 𝐴𝑛(𝑧) < 𝑥′. Therefore, for 𝑛 large enough

𝐹𝑛(𝑧) = (𝐴𝑛.𝐹𝑛)(𝐴𝑛(𝑧)) ≤ (𝐴𝑛.𝐹𝑛)(𝑥′).

The LHS tends to 𝐺(𝑧) and the RHS tends to 𝐺(𝑥′), showing

1 − 𝜀 < 𝐺(𝑧) ≤ 𝐺(𝑥′) ≤ 𝐺(𝑥).

This concludes the proof that 𝐺(𝑥) = 1 for all 𝑥 > 𝛽.
The proof that 𝐺(𝑥) = 0 for all 𝑥 < 𝛽 is similar.

Lemma 7.4 (Impossibility of expanding affine transformations). Let (𝐹𝑛)𝑛∈ℕ be a sequence of
c.d.f.s which converges to a nondegenerate c.d.f. 𝐺, 𝐹𝑛

d⟶ 𝐺. Consider affine transformations
of the form 𝐴𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛, with 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ, such that 𝑎𝑛 → +∞ as 𝑛 → ∞. Then
𝐴𝑛.𝐹𝑛 cannot converge to any c.d.f.

Proof. Since 𝐺 is assumed nondegenerate, by Lemma 1.16 we can pick two continuity points
𝑥1 < 𝑥2 of 𝐺 such that 0 < 𝐺(𝑥1) ≤ 𝐺(𝑥2) < 1. Then from the assumption 𝐹𝑛

d⟶ 𝐺 we get
𝐹𝑛(𝑥1) → 𝐺(𝑥1) and 𝐹𝑛(𝑥2) → 𝐺(𝑥2).

Assume, by way of contradiction, that we have convergence 𝐴𝑛.𝐹 d⟶ 𝐺 to some c.d.f. 𝐺.
We claim that then (𝐴𝑛(𝑥1))𝑛∈ℕ is bounded from below and (𝐴𝑛(𝑥2))𝑛∈ℕ is bounded from

above. Since

𝑎𝑛 = 𝐴𝑛(𝑥2) − 𝐴𝑛(𝑥1)
𝑥2 − 𝑥1

,

this will show that (𝑎𝑛)𝑛∈ℕ is bounded from above, contradicting the assumption 𝑎𝑛 → +∞, and
finishing the proof.
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To show that (𝐴𝑛(𝑥1))𝑛∈ℕ is bounded from below, choose a continuity point 𝑧 of 𝐺 such that

𝐺(𝑧) < 𝐺(𝑥1). Then the assumed convergence 𝐴𝑛.𝐹 d⟶ 𝐺 implies (𝐴𝑛.𝐹 )(𝑧) → 𝐺(𝑧). On the
other hand, if (𝐴𝑛(𝑥1))𝑛∈ℕ is not bounded from below, then along some subsequence (𝑛𝑘)𝑘∈ℕ of
indices we have 𝐴𝑛𝑘

(𝑥1) < 𝑧, and for those indices we then have

𝐹𝑛𝑘
(𝑥1) = (𝐴𝑛𝑘

.𝐹𝑛𝑘
)(𝐴𝑛𝑘

(𝑥1)) ≤ (𝐴𝑛𝑘
.𝐹𝑛𝑘

)(𝑧).

The LHS tends to 𝐺(𝑥1) as 𝑘 → ∞, whereas the RHS tends to 𝐺(𝑧). We get 𝐺(𝑥1) ≤ 𝐺(𝑧),
contradicting the choice of 𝑧. This shows that (𝐴𝑛(𝑥1))𝑛∈ℕ must in fact be bounded from below.

The proof that (𝐴𝑛(𝑥2))𝑛∈ℕ must be bounded from above is similar.

Theorem 7.5 (Convergence to types). Suppose that (𝐹𝑛)𝑛∈ℕ is a sequence of c.d.f.s which
converges to a nondegenerate c.d.f. 𝐺, i.e., 𝐹𝑛

d⟶ 𝐺 as 𝑛 → ∞. Let (𝐴𝑛)𝑛∈ℕ be a sequence of
oriented affine isomorphisms of ℝ, 𝐴𝑛 ∈ Aff+ℝ such that 𝐴𝑛.𝐹𝑛

d⟶ 𝐺 for some c.d.f. 𝐺.
If we write 𝐴𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛, then (𝑎𝑛)𝑛∈ℕ and (𝑏𝑛)𝑛∈ℕ are bounded sequences.
If 𝐺 is nondegenerate, then 𝐴𝑛 → 𝐴 ∈ Aff+ℝ and 𝐴.𝐺 = 𝐺. In particular 𝐺 and 𝐺 are of

the same type. Moreover, 𝐴 is the unique affine transformation for which the equality 𝐴.𝐺 = 𝐺
holds.

Proof. Let us first argue that (𝑎𝑛)𝑛∈ℕ are bounded. If not, then by passing to a subsequence,
we have 𝑎𝑛𝑘

→ +∞. But since 𝐹𝑛𝑘

d⟶ 𝐺 and 𝐺 is nondegenerate, it contradicts Lemma 7.4 to

have 𝐴𝑛𝑘
.𝐹𝑛𝑘

d⟶ 𝐺. Therefore (𝑎𝑛)𝑛∈ℕ must be bounded: there exists some 𝑀 > 0 such that
𝑎𝑛 ≤ 𝑀 for all 𝑛 ∈ ℕ.

Let us then argue that (𝑏𝑛)𝑛∈ℕ is bounded. If not, then we can extract a subsequence such
that either 𝑏𝑛𝑘

→ −∞ or 𝑏𝑛𝑘
→ +∞. Let us prove the impossibility of the second one, the

first is similar. So assume that 𝑏𝑛𝑘
→ +∞. Since 𝐺 is nondegenerate, we may pick a continuity

point 𝑥0 of 𝐺 such that 0 < 𝐺(𝑥0) < 1. Then we have 𝐹𝑛(𝑥0) → 𝐺(𝑥0) by the assumption
𝐹𝑛

d⟶ 𝐺. We may also pick a continuity point 𝑧 of 𝐺 such that 𝐺(𝑧) > 𝐺(𝑥0). Then we have
(𝐴𝑛.𝐹𝑛)(𝑧) → 𝐺(𝑧) by the assumption 𝐴𝑛.𝐹𝑛

d⟶ 𝐺. But 𝐴𝑛𝑘
(𝑥0) = 𝑎𝑛𝑘

𝑥0 + 𝑏𝑛𝑘
→ +∞, since

0 < 𝑎𝑛𝑘
≤ 𝑀 and 𝑏𝑛𝑘

→ +∞. Therefore we have for all large enough 𝑘 that 𝐴𝑛𝑘
(𝑥0) > 𝑧. And

then

(𝐴𝑛𝑘
.𝐹𝑛𝑘

)(𝑧) ≤ (𝐴𝑛𝑘
.𝐹𝑛𝑘

)(𝐴𝑛𝑘
(𝑥0)) = 𝐹𝑛𝑘

(𝑥0).

The LHS tends to 𝐺(𝑧) as 𝑘 → ∞, and the RHS tends to 𝐺(𝑥0). Therefore we get 𝐺(𝑧) ≤ 𝐺(𝑥0),
contradicting the choice of 𝑧. This shows that we cannot have 𝑏𝑛𝑘

→ +∞. Similarly one proves
that we cannot have 𝑏𝑛𝑘

→ −∞. We conclude that (𝑏𝑛)𝑛∈ℕ is indeed bounded.
From now on, suppose furthermore that also 𝐺 is nondegenerate. We claim that then (𝑎𝑛)𝑛∈ℕ

is bounded away from 0: for some 𝜀 > 0 we have 𝑎𝑛 ≥ 𝜀 for all 𝑛 ∈ ℕ. If not, then we could
extract a subsequence such that 𝑎𝑛𝑘

→ 0 and also 𝑏𝑛 → 𝛽 (since 𝑏𝑛 is bounded). But since

𝐹𝑛𝑘

d⟶ 𝐺 and 𝐺 is nondegenerate, from Lemma 7.3 we would get 𝐴𝑛𝑘
.𝐹𝑛𝑘

d⟶ 𝐺0, where 𝐺0 is

degenerate. But by assumption 𝐴𝑛𝑘
.𝐹𝑛𝑘

d⟶ 𝐺, where 𝐺 is nondegenerate; this is impossible by
uniqueness of limits for convergence in distribution. Therefore (𝑎𝑛)𝑛∈ℕ must indeed be bounded
away from 0.
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Note that since (𝑎𝑛)𝑛∈ℕ is bounded away from 0 and +∞, and (𝑏𝑛)𝑛∈ℕ is bounded, we can
extract a subsequence such that 𝑎𝑛𝑘

→ 𝛼 ∈ (0, +∞) and 𝑏𝑛𝑘
→ 𝛽 ∈ ℝ. By assumption, we have

𝐴𝑛𝑘
.𝐹𝑛𝑘

d⟶ 𝐺. But since 𝐴𝑛𝑘
→ 𝐴 where 𝐴(𝑥) = 𝛼𝑥 + 𝛽 and we have also assumed 𝐹𝑛𝑘

d⟶ 𝐺,

this implies by continuity (Lemma 1.22) that 𝐴𝑛𝑘
.𝐹𝑛𝑘

d⟶ 𝐴.𝐺. By uniqueness of limits, we get
𝐴.𝐺 = 𝐺.

To prove that in fact 𝐴𝑛 → 𝐴, not just along a subsequence, note the following. From any
subsequence 𝐴𝑛𝑘

, we can extract a further convergent subsequence of values of 𝑎𝑛𝑘ℓ
and 𝑏𝑛𝑘ℓ

values as above, with limits 𝛼′ ∈ (0, +∞) and 𝛽′ ∈ ℝ. The same argument as above shows that
𝐴′.𝐺 = 𝐺 where 𝐴′(𝑥) = 𝛼′𝑥 + 𝛽′. Lemma 7.2 then says that we must have 𝐴′ = 𝐴, i.e., 𝛼′ = 𝛼
and 𝛽′ = 𝛽. Since any subsequence has a convergent further subsequence with the same limit,
the entire sequence must converge, 𝐴𝑛 → 𝐴. The proof is complete.

Theorem 7.6 (Convergence to types again). Let (𝐴𝑛)𝑛∈ℕ and (𝐴𝑛)𝑛∈ℕ be two sequences of
oriented affine isomorphisms of ℝ, 𝐴𝑛, 𝐴𝑛 ∈ Aff+ℝ . Write 𝐴𝑛(𝑥) = 𝑎𝑛𝑥+𝑏𝑛 and 𝐴𝑛(𝑥) = ̃𝑎𝑛𝑥+ ̃𝑏𝑛,
and for the inverses 𝐴−1

𝑛 (𝑥) = 𝑐𝑛𝑥 + 𝑑𝑛 and 𝐴−1
𝑛 (𝑥) = ̃𝑐𝑛𝑥 + ̃𝑑𝑛.

Let (𝐹𝑛)𝑛∈ℕ be a sequence of c.d.f.s such that 𝐴𝑛.𝐹𝑛
d⟶ 𝐺, with 𝐺 a nondegenerate c.d.f.

Then the convergence of also 𝐴𝑛.𝐹𝑛
d⟶ 𝐺 holds if and only if the coefficients of the affine

maps satisfy the relations

̃𝑎𝑛
𝑎𝑛

→ 1 and 𝑎𝑛 ̃𝑏𝑛 − ̃𝑎𝑛𝑏𝑛
𝑎𝑛

→ 0,

or equivalently,

̃𝑐𝑛
𝑐𝑛

→ 1 and
̃𝑑𝑛 − 𝑑𝑛
𝑐𝑛

→ 0.

Proof. (This is actually just a special case of what is stated as Corollary 7.7 below. The better
organization is to prove that corollary directly, and obtain this lemma as a special case.)

We will apply the convergence to types with the reference sequence (𝐴𝑛.𝐹𝑛)𝑛∈ℕ, which by
assumption tends to a nondegenerate 𝐺.

To express the other sequence in terms of the reference sequence, we write

𝐴𝑛.𝐹𝑛 = (𝐴𝑛𝐴−1
𝑛 ).(𝐴𝑛.𝐹𝑛).

By assumption this also tends to 𝐺.
Theorem 7.5 applies, and guarantees convergence 𝐴𝑛𝐴−1

𝑛 → 𝐴 to some 𝐴 ∈ Aff+ℝ , and it also
implies 𝐴.𝐺 = 𝐺 (note that the other limit is also 𝐺 by our assumptions). However, the unique
𝐴 for which we have 𝐴.𝐺 = 𝐺 is 𝐴 = id. We therefore get 𝐴𝑛𝐴−1

𝑛 → id. To explicitly see the
coefficients, note that

𝐴−1
𝑛 (𝑥) = 𝑎−1

𝑛 (𝑥 − 𝑏𝑛)

and

𝐴𝑛(𝐴−1
𝑛 (𝑥)) = ̃𝑎𝑛(𝑎−1

𝑛 (𝑥 − 𝑏𝑛)) + ̃𝑏𝑛

= ̃𝑎𝑛𝑎−1
𝑛 𝑥 − ̃𝑎𝑛𝑎−1

𝑛 𝑏𝑛 + ̃𝑏𝑛.
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The convergence 𝐴𝑛𝐴−1
𝑛 → id is equivalent to the convergence of the coefficients,

̃𝑎𝑛𝑎−1
𝑛 ⟶ 1

− ̃𝑎𝑛𝑎−1
𝑛 𝑏𝑛 + ̃𝑏𝑛 ⟶ 0.

The second one can be rewritten as

𝑎𝑛 ̃𝑏𝑛 − ̃𝑎𝑛𝑏𝑛
𝑎𝑛

⟶ 0.

Corollary 7.7 (Convergence to types with different limits). Let (𝐴𝑛)𝑛∈ℕ and (𝐴𝑛)𝑛∈ℕ be two
sequences of oriented affine isomorphisms of ℝ, 𝐴𝑛, 𝐴𝑛 ∈ Aff+ℝ . Write 𝐴𝑛(𝑥) = 𝑎𝑛𝑥 + 𝑏𝑛 and
𝐴𝑛(𝑥) = ̃𝑎𝑛𝑥 + ̃𝑏𝑛, and for the inverses 𝐴−1

𝑛 (𝑥) = 𝑐𝑛𝑥 + 𝑑𝑛 and 𝐴−1
𝑛 (𝑥) = ̃𝑐𝑛𝑥 + ̃𝑑𝑛.

Let (𝐹𝑛)𝑛∈ℕ be a sequence of c.d.f.s such that 𝐴𝑛.𝐹𝑛
d⟶ 𝐺 and 𝐴𝑛.𝐹𝑛

d⟶ 𝐺, with 𝐺 and 𝐺
nondegenerate c.d.f.s. Then for some 𝛼 > 0 and 𝛽 ∈ ℝ we have

̃𝑎𝑛
𝑎𝑛

→ 𝛼 and 𝑎𝑛 ̃𝑏𝑛 − ̃𝑎𝑛𝑏𝑛
𝑎𝑛

→ 𝛽,

and we have

𝐴.𝐺 = 𝐺 where 𝐴(𝑥) = 𝛼𝑥 + 𝛽.

Equivalently, with 𝛾 = 𝛼−1 and 𝛿 = −𝛼−1𝛽 so that 𝐴−1(𝑥) = 𝛾𝑥 + 𝛿, we have

̃𝑐𝑛
𝑐𝑛

→ 𝛾 and
̃𝑑𝑛 − 𝑑𝑛
𝑐𝑛

→ 𝛿.

In particular, 𝐺 and 𝐺 have the same type.

Proof. We will apply the convergence to types with the reference sequence (𝐴𝑛.𝐹𝑛)𝑛∈ℕ, which
by assumption tends to a nondegenerate 𝐺.

To express the other sequence in terms of the reference sequence, we write

𝐴𝑛.𝐹𝑛 = (𝐴𝑛𝐴−1
𝑛 ).(𝐴𝑛.𝐹𝑛).

By assumption this tends to a nondegenerate 𝐺.
Theorem 7.5 applies, and guarantees convergence 𝐴𝑛𝐴−1

𝑛 → 𝐴 to some 𝐴 ∈ Aff+ℝ , and it also
implies 𝐴.𝐺 = 𝐺.

Write 𝐴(𝑥) = 𝛼𝑥 + 𝛽. To explicitly see the coefficients of 𝐴𝑛𝐴−1
𝑛 , note that

𝐴−1
𝑛 (𝑥) = 𝑎−1

𝑛 (𝑥 − 𝑏𝑛)

and

𝐴𝑛(𝐴−1
𝑛 (𝑥)) = ̃𝑎𝑛(𝑎−1

𝑛 (𝑥 − 𝑏𝑛)) + ̃𝑏𝑛

= ̃𝑎𝑛𝑎−1
𝑛 𝑥 − ̃𝑎𝑛𝑎−1

𝑛 𝑏𝑛 + ̃𝑏𝑛.
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The convergence 𝐴𝑛𝐴−1
𝑛 → 𝐴 is equivalent to the convergence of the coefficients,

̃𝑎𝑛𝑎−1
𝑛 ⟶ 𝛼

− ̃𝑎𝑛𝑎−1
𝑛 𝑏𝑛 + ̃𝑏𝑛 ⟶ 𝛽.

The second one can be rewritten as
𝑎𝑛 ̃𝑏𝑛 − ̃𝑎𝑛𝑏𝑛

𝑎𝑛
⟶ 𝛽.

Lemma 7.8 (A choice of normalizing constants for convergence to types). (It is possible to
choose normalization constants for the affine transformations using the left-continuous inverses
of the c.d.f.s. TODO: Precise statement.)
Proof. …

7.2 One-parameter subgroups of affine transformations
Definition 7.9 (Subgroup of translations). The mapping 𝑠 ↦ 𝐴𝑠 with

𝐴𝑠(𝑥) = 𝑥 + 𝑠
is a homomorphism ℝ → Aff+ℝ . The image of this homomorphism is the subgroup of translations
in Aff+ℝ .
Lemma 7.10 (Only translations have no fixed points). If 𝐴 ∈ Aff+ℝ has no fixed points (no
𝑥 ∈ ℝ such that 𝐴(𝑥) = 𝑥) then 𝐴 belongs to the subgroup of translations, i.e., 𝐴(𝑥) = 𝑥 + 𝑠 for
some 𝑠 ∈ ℝ (in fact 𝑠 ≠ 0).
Proof. Let us prove this by contrapositive: that any element 𝐴 which is not a translation must
have a fixed point. So assume that 𝐴 is not a translation, i.e., 𝐴(𝑥) = 𝑎𝑥 + 𝑏 with some 𝑎 ≠ 1.
Then the fixed point equation 𝐴(𝑥) = 𝑥 reads

𝑎𝑥 + 𝑏 = 𝑥,
and it has a solution 𝑥 = −𝑏

𝑎−1 ∈ ℝ, which then is a fixed point of 𝐴.

Lemma 7.11 (Conjugate of translation is translation). Let 𝐴(𝛽)
𝑠 = 𝑥 + 𝛽𝑠 for 𝑠, 𝛽 ∈ ℝ as in

Definition 7.9. Let also 𝐵 ∈ Aff+ℝ be given by 𝐵(𝑥) = 𝑎𝑥 + 𝑏. Then

𝐵 𝐴(𝛽)
𝑠 𝐵−1 = 𝐴(𝑎𝛽)

𝑠 .
Proof. Calculate, for 𝑥 ∈ ℝ

(𝐵𝐴(𝛽)
𝑠 𝐵−1)(𝑥) = (𝐵𝐴(𝛽)

𝑠 )(𝑥 − 𝑏
𝑎 )

= 𝐵(𝑥 − 𝑏
𝑎 + 𝛽𝑠)

= 𝑎(𝑥 − 𝑏
𝑎 + 𝛽𝑠) + 𝑏

= 𝑥 − 𝑏 + 𝑎𝛽𝑠 + 𝑏
= 𝑥 + 𝑎𝛽𝑠 = 𝐴(𝑎𝛽)

𝑠 (𝑥).

31



Definition 7.12 (Subgroup fixing a point). The mapping 𝑠 ↦ 𝐴𝑠 with

𝐴𝑠(𝑥) = 𝑒𝑠(𝑥 − 𝑐) + 𝑐

is a homomorphism ℝ → Aff+ℝ . The image of this homomorphism is the subgroup fixing 𝑐 in Aff+ℝ .

Lemma 7.13 (Characterization of the subgroup fixing a point). An orientation-preserving affine
transformation 𝐴 ∈ Aff+ℝ belongs to the subgroup fixing 𝑐 ∈ ℝ if and only if 𝐴(𝑐) = 𝑐.

(Note that the subgroup is a priori defined as the image of a homomorphism, so the statement
indeed requires a proof.)

Proof. Suppose first that 𝐴 is an element of the said subgroup, i.e., 𝐴(𝑥) = 𝑒𝑠(𝑥 − 𝑐) + 𝑐 for
some 𝑠 ∈ ℝ. Then clearly 𝐴(𝑐) = 𝑐.

Suppose then that 𝐴(𝑐) = 𝑐. Write 𝐴(𝑥) = 𝑎𝑥 + 𝑏 for 𝑎 > 0 and 𝑏 ∈ ℝ. Plug in 𝑥 = 𝑐 in the
assumed fixed point property to obtain

𝑎𝑐 + 𝑏 = 𝑐.

The above can be solved to give 𝑏 = (1 − 𝑎)𝑐. Also since 𝑎 > 0, we can write 𝑎 = 𝑒𝑠 with 𝑠 ∈ ℝ.
With these, the formula for 𝐴 simplifies to

𝐴(𝑥) = 𝑒𝑠𝑥 + 𝑐(1 − 𝑒𝑠) = 𝑒𝑠(𝑥 − 𝑐) + 𝑐.

This shows 𝐴 = 𝐴𝑠 as desired (with 𝐴𝑠 as in Definition 7.12).

Lemma 7.14 (Conjugate of fixing is fixing image). Let 𝐴(𝛼;𝑐)
𝑠 = 𝑒𝛼𝑠(𝑥 − 𝑐) + 𝑐 for 𝛼, 𝑐 ∈ ℝ as

in Definition 7.12. Let also 𝐵 ∈ Aff+ℝ be given by 𝐵(𝑥) = 𝑎𝑥 + 𝑏. Then

𝐵 𝐴(𝛼;𝑐)
𝑠 𝐵−1 = 𝐴(𝛼;𝐵(𝑐))

𝑠 .

Proof. Calculate, for 𝑥 ∈ ℝ

(𝐵𝐴(𝛼;𝑐)
𝑠 𝐵−1)(𝑥) = (𝐵𝐴(𝛼;𝑐)

𝑠 )(𝑥 − 𝑏
𝑎 )

= 𝐵(𝑒𝛼𝑠(𝑥 − 𝑏
𝑎 − 𝑐) + 𝑐)

= 𝑎𝑒𝛼𝑠(𝑥 − 𝑏
𝑎 − 𝑐) + 𝑎𝑐 + 𝑏

= 𝑒𝛼𝑠(𝑥 − (𝑎𝑐 + 𝑏)) + (𝑎𝑐 + 𝑏)
= 𝑒𝛼𝑠(𝑥 − 𝐵(𝑐)) + 𝐵(𝑐)
= 𝐴(𝛼;𝐵(𝑐))

𝑠 (𝑥).

7.3 Self-similarity characterizations of the extreme value
distributions

Lemma 7.15 (Continuous parameter extreme value limit relation). Let 𝐹 be a c.d.f.
(Note that below we use the sequence (𝐹 𝑛)𝑛∈ℕ of 𝑛th powers of a fixed c.d.f., not a sequence

of arbitrary c.d.f.s. Recall that the 𝑛th power 𝐹 𝑛 is the c.d.f. of the maximum of 𝑛 independent
random variables with the distribution 𝐹 .)
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Suppose that for a sequence (𝐴𝑛)𝑛∈ℕ of oriented affine isomorphisms of ℝ, 𝐴𝑛 ∈ Aff+ℝ , we
have

𝐴𝑛.𝐹 𝑛 d⟶ 𝐺,

where 𝐺 is a c.d.f.
Then, for any 𝑡 > 0, denoting by 𝐺𝑡 the c.d.f. given by 𝐺𝑡(𝑥) = (𝐺(𝑥))𝑡, we have

𝐴𝑛.𝐹 ⌊𝑛𝑡⌋ d⟶ 𝐺𝑡,

where, for 𝑥 ∈ ℝ, the floor notation ⌊𝑥⌋ stands for the greatest integer 𝑘 ∈ ℤ such that 𝑘 ≤ 𝑥.

Proof. Let 𝑡 > 0 and let 𝑥 ∈ ℝ be a continuity point of 𝐺. For 𝑛 ∈ ℕ, calculate

((𝐴𝑛.𝐹 )(𝑥))⌊𝑛𝑡⌋ = (((𝐴𝑛.𝐹 )(𝑥))𝑛)
⌊𝑛𝑡⌋/𝑛

.

By assumption, we have ((𝐴𝑛.𝐹 )(𝑥))𝑛 → 𝐺(𝑥) as 𝑛 → ∞. Also ⌊𝑛𝑡⌋/𝑛 → 𝑡 as 𝑛 → ∞. By
(joint) continuity of the power function (𝑥, 𝑦) ↦ 𝑥𝑦 = exp (𝑦 log(𝑥)), we get that the expression
above tends to 𝐺(𝑥)𝑡.

Finally noting that the continuity points of 𝐺𝑡 are the same as the continuity points of 𝐺,
the above in fact proves the asserted 𝐴𝑛.𝐹 ⌊𝑛𝑡⌋ d⟶ 𝐺𝑡.

Lemma 7.16 (Self-similarity of extreme value distributions). Suppose that 𝐺 is an extreme-value
distribution. Then there exists a family (𝐴𝑡)𝑡>0 of oriented affine isomorphisms of ℝ, 𝐴𝑡 ∈ Aff+ℝ ,
such that for any 𝑡 > 0

𝐺𝑡 = 𝐴𝑡.𝐺.

Moreover, 𝑡 ↦ 𝐴𝑡 is a measurable homomorphism of multiplicative groups (0, +∞) → Aff+ℝ .

Proof. …

Lemma 7.17 (Self-similar continuous c.d.f. family characterization 𝛾 = 0). Suppose that 𝐺 is
a nondegenerate c.d.f. such that

𝐺𝑡 = 𝐴𝑡.𝐺 for any 𝑡 > 0,

where

𝐴𝑡(𝑥) = 𝑥 + 𝛽 log 𝑡

with 𝛽 > 0.
Then with 𝑑 = log ( − log 𝐺(0)), for all 𝑥 ∈ ℝ we have

𝐺(𝑥) = exp ( − exp ( − 𝛽−1𝑥 + 𝑑)).

(In particular, 𝐺 is of Gumbel type: there exists an 𝐴 ∈ Aff+ℝ such that 𝐺 = 𝐴.Λ.)

33



Proof. Since 𝐺 is nondegenerate, there exists an 𝑥0 ∈ ℝ with 0 < 𝐺(𝑥0) < 1. Write 𝑞 =
− log 𝐺(𝑥0) > 0, so that 𝐺(𝑥0) = 𝑒−𝑞.

For 𝑡 > 0, from the equation 𝐺𝑡 = 𝐴𝑡.𝐺 we get for any 𝑥 ∈ ℝ

𝐺(𝑥)𝑡 = 𝐺(𝐴−1
𝑡 (𝑥)) = 𝐺(𝑥 − 𝛽 log(𝑡)).

In particular, with 𝑥 = 𝑥0 + 𝛽 log(𝑡), we get

𝐺(𝑥0 + 𝛽 log(𝑡))𝑡 = 𝐺(𝑥0) = 𝑒−𝑞,

from which we can solve

𝐺(𝑥0 + 𝛽 log(𝑡)) = 𝑒−𝑞/𝑡.

The above holds for any 𝑡 > 0, and any 𝑥 ∈ ℝ can be written as 𝑥 = 𝑥0 + 𝛽 log (𝑒(𝑥−𝑥0)/𝛽). We
therefore get, for any 𝑥 ∈ ℝ,

𝐺(𝑥) = exp ( − 𝑞 exp ( − (𝑥 − 𝑥0)/𝛽)).

This is of the desired form, with 𝑑 = 𝑥0
𝛽 + log(𝑞). Plugging in 𝑥 = 0 then shows 𝑑 = log ( −

log 𝐺(0)).

Lemma 7.18 (Self-similar continuous c.d.f. family characterization 𝛾 > 0). Suppose that 𝐺 is
a nondegenerate c.d.f. such that

𝐺𝑡 = 𝐴𝑡.𝐺 for any 𝑡 > 0,

where

𝐴𝑡(𝑥) = 𝑡𝛼𝑥 + 𝑐 (1 − 𝑡𝛼) = 𝑡𝛼(𝑥 − 𝑐) + 𝑐

with 𝑐 ∈ ℝ and 𝛼 > 0.
Then with 𝜎 = ( − log 𝐺(𝑐 + 1))𝛼, for all 𝑥 ≥ 𝑐 we have

𝐺(𝑥) = exp ( − (𝑥 − 𝑐
𝜎 )−1/𝛼)).

(It easily follows that 𝐺 is of Fréchet type: there exists an 𝐴 ∈ Aff+ℝ such that 𝐺 = 𝐴.Φ𝛼.)

Proof. Since 𝐺 is nondegenerate, there exists an 𝑥0 ∈ ℝ with 0 < 𝐺(𝑥0) < 1. Write 𝑞 =
− log 𝐺(𝑥0) > 0, so that 𝐺(𝑥0) = 𝑒−𝑞.

For 𝑡 > 0, from the equation 𝐺𝑡 = 𝐴𝑡.𝐺 we get for any 𝑥 ∈ ℝ

𝐺(𝑥)𝑡 = 𝐺(𝐴−1
𝑡 (𝑥)).

Note that for 𝑥 ≤ 𝑐 and 𝑡 = 2 we have 𝐴−1
2 (𝑥) = 2−𝛼(𝑥 − 𝑐) + 𝑐 ≥ 𝑥, so the above implies

𝐺(𝑥)2 = 𝐺(𝐴−1
2 (𝑥)) ≥ 𝐺(𝑥). This not possible if 0 < 𝐺(𝑥) < 1, so we must in particular have

𝑥0 > 𝑐.
With 𝑥 = 𝐴𝑡(𝑥0) in the above equation, we get

𝐺(𝐴𝑡(𝑥0))𝑡 = 𝐺(𝑥0) = 𝑒−𝑞,
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from which we can solve

𝐺(𝑥) = 𝐺(𝐴𝑡(𝑥0)) = 𝑒−𝑞/𝑡.

Any 𝑥 ≥ 𝑐 can be written as 𝑥 = 𝐴𝑡(𝑥0) = 𝑡𝛼(𝑥0 − 𝑐) + 𝑐 with 𝑡 = ( 𝑥−𝑐
𝑥0−𝑐 )1/𝛼 (recall that

𝑥0 − 𝑐 > 0). We therefore get, for any 𝑥 ≥ 𝑐,

𝐺(𝑥) = exp ( − 𝑞 ( 𝑥 − 𝑐
𝑥0 − 𝑐 )−1/𝛼)).

This is of the form

𝐺(𝑥) = exp ( − (𝑥 − 𝑐
𝜎 )−1/𝛼)),

and plugging in 𝑥 = 𝑐 + 1 yields 𝜎 = ( − log 𝐺(𝑐 + 1))𝛼.

Lemma 7.19 (Self-similar continuous c.d.f. family characterization 𝛾 < 0). Suppose that 𝐺 is
a nondegenerate c.d.f. such that

𝐺𝑡 = 𝐴𝑡.𝐺 for any 𝑡 > 0,

where

𝐴𝑡(𝑥) = 𝑡−𝛼𝑥 + 𝑐 (1 − 𝑡−𝛼) = 𝑡−𝛼(𝑥 − 𝑐) + 𝑐

with 𝑐 ∈ ℝ and 𝛼 > 0.
Then with 𝜎 = ( − log 𝐺(𝑐 − 1))−𝛼, for all 𝑥 ≤ 𝑐 we have

𝐺(𝑥) = exp ( − (𝑐 − 𝑥
𝜎 )1/𝛼)).

(It easily follows that 𝐺 is of Weibull type: there exists an 𝐴 ∈ Aff+ℝ such that 𝐺 = 𝐴.Ψ𝛼.)

Proof. (Note: The Lean formalized statement uses the opposite sign of 𝛼: it is assumed that
𝛼 < 0 and 𝐴𝑡(𝑥) = 𝑡+𝛼(𝑥 − 𝑐) + 𝑐.)

Since 𝐺 is nondegenerate, there exists an 𝑥0 ∈ ℝ with 0 < 𝐺(𝑥0) < 1. Write 𝑞 = − log 𝐺(𝑥0) >
0, so that 𝐺(𝑥0) = 𝑒−𝑞.

For 𝑡 > 0, from the equation 𝐺𝑡 = 𝐴𝑡.𝐺 we get for any 𝑥 ∈ ℝ

𝐺(𝑥)𝑡 = 𝐺(𝐴−1
𝑡 (𝑥)).

Note that for 𝑥 ≥ 𝑐 and 𝑡 = 2 we have 𝐴−1
2 (𝑥) = 2𝛼(𝑥 − 𝑐) + 𝑐 ≥ 𝑥, so the above implies

𝐺(𝑥)2 = 𝐺(𝐴−1
2 (𝑥)) ≥ 𝐺(𝑥). This not possible if 0 < 𝐺(𝑥) < 1, so we must in particular have

𝑥0 < 𝑐.
With 𝑥 = 𝐴𝑡(𝑥0) in the above equation, we get

𝐺(𝐴𝑡(𝑥0))𝑡 = 𝐺(𝑥0) = 𝑒−𝑞,

from which we can solve

𝐺(𝑥) = 𝐺(𝐴𝑡(𝑥0)) = 𝑒−𝑞/𝑡.
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Any 𝑥 ≤ 𝑐 can be written as 𝑥 = 𝐴𝑡(𝑥0) = 𝑡−𝛼(𝑥0 − 𝑐) + 𝑐 with 𝑡 = ( 𝑐−𝑥
𝑐−𝑥0

)−1/𝛼 (recall that
𝑐 − 𝑥0 > 0). We therefore get, for any 𝑥 ≤ 𝑐,

𝐺(𝑥) = exp ( − 𝑞 ( 𝑐 − 𝑥
𝑐 − 𝑥0

)1/𝛼)).

This is of the form

𝐺(𝑥) = exp ( − (𝑐 − 𝑥
𝜎 )1/𝛼)),

and plugging in 𝑥 = 𝑐 − 1 yields 𝜎 = ( − log 𝐺(𝑐 − 1))−𝛼.

Theorem 7.20 (Three types of extreme value distributions [Fisher-Tippett-Gnedenko). ] For
any extreme value distribution 𝐺, one of the following holds:

(Λ) 𝐺 = 𝐴.Λ for some 𝐴 ∈ Aff+ℝ ;

(Φ) 𝐺 = 𝐴.Φ𝛼 for some 𝐴 ∈ Aff+ℝ and 𝛼 > 0;

(Ψ) 𝐺 = 𝐴.Ψ𝛼 for some 𝐴 ∈ Aff+ℝ and 𝛼 > 0.

In particular, the only three possible types of extreme value distributions are the type of the
Gumbel c.d.f., the type of the Fréchet c.d.f. Φ𝛼 for 𝛼 > 0, and the type of the Weibull c.d.f. Ψ𝛼
for 𝛼 > 0.

Proof. …
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Chapter 8

Left-continuous inverses

Let 𝑅 and 𝑆 be complete linear orders, for example [0, 1], [0, +∞], or [−∞, +∞] =∶ ℝ.

Definition 8.1. Let 𝑓 ∶ 𝑅 → 𝑆 be a function (usually assumed nondecreasing). The left-
continuous inverse of 𝑓 is the function 𝑓→1 ∶ 𝑆 → 𝑅 given by

𝑓→1(𝑦) ∶= inf {𝑥 ∈ 𝑅 ∣ 𝑓(𝑥) ≥ 𝑦} for 𝑦 ∈ 𝑆.

The right-continuous inverse 𝑓←1 ∶ 𝑆 → 𝑅 is analoguously defined by

𝑓←1(𝑦) ∶= sup {𝑥 ∈ 𝑅 ∣ 𝑓(𝑥) ≤ 𝑦} for 𝑦 ∈ 𝑆.
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Chapter 9

Cauchy-Hamel functional
equation

9.1 Positive measure additive subgroups of the reals
Lemma 9.1 (Countably many connected components for an open set). Let 𝑋 be a locally
connected separable space. Then any open subset 𝑈 ⊆ 𝑋 has at most countably many connected
components.

Proof. (The proof is already formalized, see: IsOpen.countable-setOf-connectedComponentIn.)

For subsets 𝐴, 𝐵 ⊆ ℝ, we use the following notation for pointwise sum sets and difference
sets:

𝐴 + 𝐵 = {𝑎 + 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,
𝐴 − 𝐵 = {𝑎 − 𝑏 ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

We denote by Λ the Lebesgue measure on ℝ.

Lemma 9.2 (Finding an interval with high overlap). Let 𝐴 ⊂ ℝ be a measurable set such that
0 < Λ[𝐴] < +∞. Then for any 𝑟 ∈ [0, 1), there exists a nontrivial interval 𝐽 ⊂ ℝ (a subset of
the real line which is connected and has nonempty interior) such that

Λ[𝐴 ∩ 𝐽] > 𝑟 Λ[𝐽].
Proof. Assume, without loss of generality, 0 < 𝑟 < 1. Since the Lebesgue measure is outer
regular, we can find an open set 𝑈 ⊂ ℝ such that 𝐴 ⊆ 𝑈 and Λ[𝑈] < 𝑟−1 Λ[𝐴].

The open set 𝑈 has at most countably many connected components (which are in fact open
intervals); denote by (𝑈𝑖)𝑖∈𝐼 the indexed collection of them.

Note that for at least one index 𝑗 ∈ 𝐼 we have Λ[𝐴 ∩ 𝑈𝑗] > 𝑟Λ[𝑈𝑗], because otherwise we get

Λ[𝐴] = Λ[𝐴 ∩ 𝑈] = ∑
𝑖∈𝐼

Λ[𝐴 ∩ 𝑈𝑖]

≤ 𝑟 ∑
𝑖∈𝐼

Λ[𝑈𝑖]

= 𝑟Λ[𝑈],
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contradicting the choice of 𝑈 .
Now 𝐽 = 𝑈𝑗 has the desired properties.

Lemma 9.3 (Shifts of a smaller interval contained in a larger interval). Let 𝐼, 𝐽 be nontrivial
intervals, whose length satisfy

0 < Λ[𝐽] < Λ[𝐼] < +∞.

Then there exists an open interval Δ of length Λ[Δ] = Λ[𝐼] − Λ[𝐽] > 0 such that

𝑡 + 𝐽 ⊂ 𝐼 for any 𝑡 ∈ Δ.

Proof. …

Lemma 9.4 (Overlapping union of copies of an interval). Let 𝐽 be a nontrivial interval of finite
length (0 < Λ[𝐽] < +∞). Let 𝑐 < 1 and denote 𝛿 = 𝑐Λ[𝐽] < Λ[𝐽]. Then for any 𝑡 ∈ (−𝛿, 𝛿),
the set 𝐽 ′ = (𝑡 + 𝐽) ∪ 𝐽 is an interval (connected set with nonempty interior) whose length
satisfies the bound Λ[𝐽 ′] < (1 + 𝑐) Λ[𝐽].
Proof. Denote 𝑎 = inf 𝐽 and 𝑏 = sup 𝐽 . We have −∞ < 𝑎 < 𝑏 < +∞ and

(𝑎, 𝑏) ⊆ 𝐽 ⊆ [𝑎, 𝑏]

and we have Λ[𝐽] = 𝑏 − 𝑎.
Let 𝑡 ∈ (+𝛿, 𝛿), with 𝛿 = 𝑐 Λ[𝐽] = 𝑐(𝑏 − 𝑎). Then we have the containments

( min{𝑎, 𝑎 + 𝑡}, max{𝑏, 𝑏 + 𝑡}) ⊆ (𝑡 + 𝐽) ∪ 𝐽 ⊆ [ min{𝑎, 𝑎 + 𝑡}, max{𝑏, 𝑏 + 𝑡}].

It in particular follows that 𝐽 ′ ∶= (𝑡 + 𝐽) ∪ 𝐽 is an interval.
If 𝑡 ≥ 0, then 𝐽 ′ is contained in [𝑎, 𝑏+𝑡] which has length 𝑏+𝑡−𝑎 = (𝑏−𝑎)+𝑡 < Λ[𝐽]+𝑐 Λ[𝐽] =

(1 + 𝑐)Λ[𝐽]. If 𝑡 < 0, then 𝐽 ′ is contained in [𝑎 + 𝑡, 𝑏] and one similarly gets a length bound.

Lemma 9.5 (Difference set of positive measure set contains an interval). Let 𝐴 ⊂ ℝ be a
measurable set of positive Lebesgue measure. Then there exists a 𝛿 > 0 such that

(−𝛿, 𝛿) ⊆ 𝐴 − 𝐴.

Proof. Pick a measurable subset 𝐴0 ⊆ 𝐴 such that 0 < Λ[𝐴0] < +∞.
By Lemma 9.2, we can find a nontrivial interval 𝐽 such that Λ[𝐴0∩𝐽] > 3

4 Λ[𝐽]. Let 𝛿 = 1
2 Λ[𝐽].

We claim that (−𝛿, 𝛿) ⊆ 𝐴0 −𝐴0 (which then clearly implies the assertion of the lemma). Indeed,
suppose 𝑡 ∈ (−𝛿, 𝛿). Then by Lemma 9.4, (𝑡 + 𝐽) ∪ 𝐽 is an interval of length less than 3

2 Λ[𝐽].
Moreover, we have 𝐴0 ∩ 𝐽 ⊆ (𝑡 + 𝐽) ∪ 𝐽 and 𝑡 + (𝐴0 ∩ 𝐽) ⊆ (𝑡 + 𝐽) ∪ 𝐽 . Now note that

Λ[𝑡 + (𝐴0 ∩ 𝐽)] = Λ[𝐴0 ∩ 𝐽] > 3
4Λ[𝐽].

If the sets 𝑡 + (𝐴0 ∩ 𝐽) and (𝐴0 ∩ 𝐽) were disjoint, then the measure of (𝐴0 ∩ 𝐽) ∪ (𝑡 + (𝐴0 ∩ 𝐽))
would thus be greater than 3

2 Λ[𝐽], which is impossible given the length of the interval (𝑡+𝐽)∪𝐽
is less than 3

2 Λ[𝐽]. Therefore there exists a point 𝑎 ∈ (𝑡+(𝐴0∩𝐽))∩(𝐴0∩𝐽). Denoting 𝑎′ = 𝑎−𝑡,
we have 𝑎, 𝑎′ ∈ 𝐴0 ∩ 𝐽 ⊆ 𝐴0 and 𝑡 = 𝑎 − 𝑎′ ∈ 𝐴0 − 𝐴0 ⊆ 𝐴 − 𝐴. Since 𝑡 ∈ (−𝛿, 𝛿) was arbitrary,
this proves the assertion.
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Lemma 9.6 (Dividing a high overlap interval). Let 𝐴 be a measurable. Suppose that for some
𝑎 < 𝑏, the interval 𝐽 = (𝑎, 𝑏) satisfies Λ[𝐴 ∩ 𝐽] > 𝑟 Λ[𝐽]. Let 𝑚 ∈ ℕ+, and consider the
subintervals

𝐽𝑖 = (𝑎 + 𝑖
(𝑏 − 𝑎)𝑚, 𝑎 + 𝑖 + 1

(𝑏 − 𝑎)𝑚) for 𝑖 = 0, … , 𝑚 − 1.

Then for some 𝑖 we have Λ[𝐴 ∩ 𝐽𝑖] > 𝑟 Λ[𝐽𝑖].
Proof.

Lemma 9.7 (Difference of two positive measure sets contains an interval). Let 𝐴, 𝐵 ⊂ ℝ be two
measurable sets of positive Lebesgue measure. Then the difference set 𝐴−𝐵 contains a nontrivial
open interval.

Proof. Pick measurable subsets 𝐴0 ⊆ 𝐴 and 𝐵0 ⊆ 𝐵 such that 0 < Λ[𝐴0] < +∞ and 0 <
Λ[𝐵0] < +∞.

By Lemma 9.2, we can find nontrivial intervals 𝐽, 𝐼 such that Λ[𝐴0 ∩ 𝐽] > 3
4 Λ[𝐽] and Λ[𝐵0 ∩

𝐼] > 3
4 Λ[𝐼].

By Lemma 9.6 for any 𝑛, 𝑚 ∈ ℕ we can find intervals 𝐼′ ⊂ 𝐼 and 𝐽 ′ ⊂ 𝐽 with Λ[𝐼′] = 1
𝑛 Λ[𝐼]

and Λ[𝐽 ′] = 1
𝑚 Λ[𝐽] and such that Λ[𝐴0 ∩ 𝐽 ′] > 3

4 Λ[𝐽 ′] and Λ[𝐵0 ∩ 𝐼′] > 3
4 Λ[𝐼′]. By choosing 𝑛

and 𝑚 suitably, we can ensure that

1
2Λ[𝐼′] ≤ Λ[𝐽 ′] < Λ[𝐼′].

Then by Lemma 9.3 there exists an open interval Δ of length Λ[Δ] > Λ[𝐼′] − Λ[𝐽 ′] such that
for all 𝑡 ∈ Δ we have 𝑡 + 𝐽 ′ ⊂ 𝐼 ′.

Consider a fixed 𝑡 ∈ Δ. Observe that 𝑡 + (𝐵0 ∩ 𝐽) ⊂ 𝐼 ′ and

Λ[𝑡 + (𝐵0 ∩ 𝐽 ′)] = Λ[𝐵0 ∩ 𝐽 ′] > 3
4Λ[𝐽 ′] ≥ 3

8Λ[𝐼′].

We now claim that 𝐴0 ∩ 𝐼′ and 𝑡 + (𝐵0 ∩ 𝐽 ′) intersect. Their measures add up to at least

Λ[𝐴0 ∩ 𝐼′] + Λ[𝑡 + (𝐵0 ∩ 𝐽 ′)] = Λ[𝐴0 ∩ 𝐼′] + Λ[𝐵0 ∩ 𝐽 ′]

> 3
4Λ[𝐼 ′] + 3

4Λ[𝐽 ′]

≥ 3
4Λ[𝐼 ′] + 3

8Λ[𝐼′] = 9
8Λ[𝐼 ′].

and both have been shown to be subsets of 𝐼′; therefore they cannot be disjoint. In particular
there is a point 𝑧 ∈ (𝐴0 ∩ 𝐼′) ∩ (𝑡 + 𝐵0 ∩ 𝐽 ′), which means that

𝑎 = 𝑧 = 𝑡 + 𝑏

for some 𝑎 ∈ 𝐴0 ∩ 𝐼 ′ and 𝑏 ∈ 𝐵0 ∩ 𝐽 ′. We solve 𝑡 = 𝑎 − 𝑏 ∈ 𝐴0 − 𝐵0 ⊆ 𝐴 − 𝐵. Since 𝑡 ∈ Δ was
arbitrary, we have shown that the nontrivial open interval Δ is contained in 𝐴 − 𝐵.
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