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Chapter 1

Introduction

Under construction.
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Chapter 2

Lie algebra cohomology in degree
two

Let 𝕂 be a field and let 𝔤 be a Lie algebra over 𝕂. Fix also a vector space 𝔞 over 𝕂, (interpreted,
when necessary, as an abelian Lie algebra, i.e., all Lie brackets in 𝔞 are taken to be zero).

Definition 1 (Lie algebra 1-cocycle). A 1-cocycle of the Lie algebra 𝔤 with coefficients in the
vector space 𝔞 is a linear map

𝛽 ∶ 𝔤 → 𝔞.

The set of all such 1-cocycles is denoted by 𝐶1(𝔤, 𝔞).
Definition 2 (Lie algebra 2-cocycle). A 2-cocycle of the Lie algebra 𝔤 with coefficients in the
vector space 𝔞 is a bilinear map

𝛾 ∶ 𝔤 × 𝔤 → 𝔞

such that for all 𝑋 ∈ 𝔤 we have the antisymmetry condition

𝛾(𝑋, 𝑋) = 0 (2.1)

and for all 𝑋, 𝑌 , 𝑍 ∈ 𝔤 we have the Leibnitz rule

𝛾(𝑋, [𝑌 , 𝑍]) = 𝛾([𝑋, 𝑌 ], 𝑍) + 𝛾(𝑌 , [𝑋, 𝑍]). (2.2)

The set of all such 2-cocycles is denoted by 𝐶2(𝔤, 𝔞).
Lemma 3 (Skew-symmetry of 2-cocycles). For any 𝛾 ∈ 𝐶2(𝔤, 𝔞) and any 𝑋, 𝑌 ∈ 𝔤, we have the
skew-symmetry property

𝛾(𝑋, 𝑌 ) = −𝛾(𝑌 , 𝑋).

Proof. The Leibnitz rule (4.1) applied to 𝑋 + 𝑌 gives

0 = 𝛾(𝑋 + 𝑌 , 𝑋 + 𝑌 )
= 𝛾(𝑋, 𝑋) + 𝛾(𝑋, 𝑌 ) + 𝛾(𝑌 , 𝑋) + 𝛾(𝑌 , 𝑌 )

by bilinearity of 𝛾. The first and the last terms in the last expression vanish by antisymmetry
(2.1), and the asserted skew-symmetry equation follows.
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Lemma 4 (Lie algebra 1-cocycles form a vector space). The set 𝐶1(𝔤, 𝔞) of 1-cocycles of 𝔤 with
coefficients in 𝔞 forms a vector space over 𝕂.

Proof. By definition, 𝐶1(𝔤, 𝔞) is the space of linear maps 𝔤 → 𝔞, and such linear maps form a
vector space.

Lemma 5 (Lie algebra 2-cocycles form a vector space). The set 𝐶2(𝔤, 𝔞) of 2-cocycles of 𝔤 with
coefficients in 𝔞 forms a vector space over 𝕂.

Proof. The conditions defining 𝐶2(𝔤, 𝔞) are linear, so this is staightforward.

Definition 6 (Lie algebra 2-coboundary). Given a 1-cocycle 𝛽 ∈ 𝐶1(𝔤, 𝔞), we define the cobound-
ary 𝜕𝛽 of 𝛽 to be the bilinear map

𝜕𝛽 ∶ 𝔤 × 𝔤 → 𝔞

given by

𝜕𝛽(𝑋, 𝑌 ) = 𝛽([𝑋, 𝑌 ]).

We then have 𝜕𝛽 ∈ 𝐶2(𝔤, 𝔞). The mapping 𝜕 ∶ 𝐶1(𝔤, 𝔞) → 𝐶2(𝔤, 𝔞) is linear. Its range is denoted
𝐵2(𝔤, 𝔞) ⊂ 𝐶2(𝔤, 𝔞) and called the set of 2-coboundaries of the Lie algebra 𝔤 with coefficients
in 𝔞.

Definition 7 (Lie algebra 2-cohomology). The vector space

𝐻2(𝔤, 𝔞) ∶= 𝐶2(𝔤, 𝔞) / 𝐵2(𝔤, 𝔞)

is called the Lie algebra cohomology in degree 2 of 𝔤 with coefficients in 𝔞.

Lemma 8 (Cohomology of abelian Lie algebras). If 𝔤 is abelian, i.e., [𝔤, 𝔤] = 0, then the
canonical projection

𝐶2(𝔤, 𝔞) → 𝐻2(𝔤, 𝔞)

is a linear isomorphism.

Proof. The projection is surjective by construction, so it suffices to show that it is also injective.
The kernel of the projection is 𝐵2(𝔤, 𝔞) = Im 𝜕. In view of Definition 6, abelianity of 𝔤 implies
𝜕𝛽 = 0 for any 𝛽 ∈ 𝐶1(𝔤, 𝔞). Therefore 𝐵2(𝔤, 𝔞) = 0, and the kernel of the projection is trivial,
so the projection is indeed injective.
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Chapter 3

Central extensions of Lie algebras

3.1 Central extensions of Lie algebras
Definition 9 (Lie algebra extension). An extension 𝔥 of a Lie algebra 𝔤 by a Lie algebra 𝔞 is
a Lie algebra together with a pair of two Lie algebra homomorphisms 𝜄 ∶ 𝔞 ⟶ 𝔥 and 𝜋 ∶ 𝔥 ⟶ 𝔤
which form a short exact sequence

0 ⟶ 𝔞 𝜄⟶ 𝔥 𝜋⟶ 𝔤 ⟶ 0,
i.e., such that 𝜄 is injective, 𝜋 is surjective, and Im(𝜄) = Ker(𝜋).
Definition 10 (Lie algebra central extension). A central extension 𝔥 of a Lie algebra 𝔤 by an
abelian Lie algebra 𝔞 is a Lie algebra extension

0 ⟶ 𝔞 𝜄⟶ 𝔥 𝜋⟶ 𝔤 ⟶ 0
such that Im(𝜄) is contained in the centre of 𝔥, i.e., [𝜄(𝐴), 𝑊] = 0 for all 𝐴 ∈ 𝔞, 𝑊 ∈ 𝔥.

3.2 Central extensions determined by 2-cocycles
Definition 11 (Central extension determined by a cocycle). Given a Lie algebra 2-cocycle
𝛾 ∈ 𝐶2(𝔤, 𝔞), on the vector space

𝔥𝛾 = 𝔤 ⊕ 𝔞
define a bracket by

[(𝑋, 𝐴), (𝑌 , 𝐵)]𝛾 ∶= ([𝑋, 𝑌 ]𝔤, 𝛾(𝑋, 𝑌 )).
Then 𝔥𝛾 becomes a Lie algebra with the Lie bracket [⋅, ⋅]𝛾.

Lemma 12 (Central extension determined by cohomologous cocycles). Let 𝛾1, 𝛾2 ∈ 𝐶2(𝔤, 𝔞) be
two Lie algebra 2-cocycles and 𝔥𝛾1

, 𝔥𝛾2
the central extensions corresponding to these according to

Definition 11. If the two 2-cocycles differ by a coboundary, 𝛾2 − 𝛾1 = 𝜕𝛽 with some 𝛽 ∈ 𝐶1(𝔤, 𝔞),
then the mapping 𝔥𝛾1

→ 𝔥𝛾2
given by

(𝑋, 𝐴) ↦ (𝑋, 𝐴 + 𝛽(𝑋))
is an isomophism of Lie algebras 𝔥𝛾1

≅ 𝔥𝛾2
.
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Proof. The mapping 𝜙𝛽 ∶ 𝔥1 → 𝔥2 given by

𝜙𝛽((𝑋, 𝐴)) ∶= (𝑋, 𝐴 + 𝛽(𝑋))

is clearly linear. It is also bijective, since the similarly defined mapping 𝜙−𝛽 ∶ 𝔥2 → 𝔥1, 𝜙−𝛽((𝑋, 𝐴)) ∶=
(𝑋, 𝐴 − 𝛽(𝑋)), is a two-sided inverse to 𝜙𝛽. So it remains to verify that this bijective linear map
𝜙𝛽 ∶ 𝔥1 → 𝔥2 is in fact a homomorphism Lie algebras.

Let (𝑋, 𝐴), (𝑌 , 𝐵) ∈ 𝔤 ⊕ 𝔞 = 𝔥𝛾1
. The bracket in 𝔥𝛾1

of these is, by definition,

[(𝑋, 𝐴), (𝑌 , 𝐵)]𝛾1
∶= ([𝑋, 𝑌 ]𝔤, 𝛾1(𝑋, 𝑌 )).

Applying the mapping 𝜙𝛽 to this, we get

𝜙𝛽([(𝑋, 𝐴), (𝑌 , 𝐵)]𝛾1
) = ([𝑋, 𝑌 ]𝔤, 𝛾1(𝑋, 𝑌 ) + 𝛽([𝑋, 𝑌 ]𝔤)).

On the other hand the Lie bracket in 𝔥2 of the images is

[𝜙𝛽(((𝑋, 𝐴)), 𝜙𝛽((𝑌 , 𝐵))]𝛾2

= [(𝑋, 𝐴 + 𝛽(𝑋)), (𝑌 , 𝐵 + 𝛽(𝑌 ))]𝛾2

= ([𝑋, 𝑌 ]𝔤, 𝛾2(𝑋, 𝑌 ))

= ([𝑋, 𝑌 ]𝔤, 𝛾1(𝑋, 𝑌 ) + 𝛽([𝑋, 𝑌 ]𝔤)).

From the equality of these two expressions we see that 𝜙𝛽 indeed is also a Lie algebra homomor-
phism.

Lemma 13 (Central extension determined by a cocycle is a central extension). Given a Lie
algebra 2-cocycle 𝛾 ∈ 𝐶2(𝔤, 𝔞), consider the Lie algebra 𝔥𝛾 = 𝔤 ⊕ 𝔞 as in Definition 11. With the
inclusion 𝜄 ∶ 𝔞 → 𝔤 ⊕ 𝔞 in the second direct summand and the projection 𝜋 ∶ 𝔤 ⊕ 𝔞 → 𝔤 to the first
direct summand, the Lie algebra 𝔥𝛾 = 𝔤 ⊕ 𝔞 becomes a central extension of 𝔤 by 𝔞, i.e., we have
the short exact sequence of Lie algebras

0 ⟶ 𝔞 𝜄⟶ 𝔥𝛾
𝜋⟶ 𝔤 ⟶ 0.

Proof. Clearly

0 ⟶ 𝔞 𝜄⟶ 𝔥𝛾
𝜋⟶ 𝔤 ⟶ 0

is an exact sequence of vector spaces, and it is straightforward to check with Definition 11 that
𝜄 and 𝜋 are Lie algebra homomorphisms.

Theorem 14. Every cohomology class in 𝐻2(𝔤, 𝔞) determines a well-defined isomorphism class
of central extensions of the Lie algebra 𝔤 by 𝔞 by the rule that the class [𝛾] ∈ 𝐻2(𝔤, 𝔞) of a cocycle
𝛾 ∈ 𝐶2(𝔤, 𝔞) corresponds to the isomorphism class of 𝔥𝛾 (Definition 11).

Proof. This follows from Lemmas 13 and 12.
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Chapter 4

Witt algebra and its
2-cohomology

4.1 Definition of the Witt algebra
Definition 15 (Witt algebra). Let 𝕂 be a field (or a commutative ring). The Witt algebra
over 𝕂 is the 𝕂-vector space 𝔴𝔦𝔱𝔱 (or free 𝕂-module) with basis (ℓ𝑛)𝑛∈ℤ and a 𝕂-bilinear bracket
𝔴𝔦𝔱𝔱 × 𝔴𝔦𝔱𝔱 → 𝔴𝔦𝔱𝔱 given on basis elements by

[ℓ𝑛, ℓ𝑚] = (𝑛 − 𝑚) ℓ𝑛+𝑚.

With some assumptions on 𝕂, the Witt algebra 𝔴𝔦𝔱𝔱 with the above bracket is an ∞-
dimensional Lie algebra over 𝕂.

Lemma 16 (Witt algebra is a Lie algebra). If 𝕂 is a field of characteristic zero, then 𝔴𝔦𝔱𝔱 is a
Lie algebra over 𝕂.

(In the case when 𝕂 is a commutative ring, the 𝔴𝔦𝔱𝔱 is also a Lie algebra assuming the 𝕂 has
characteristic zero and that for 𝑐 ∈ 𝕂 and 𝑋 ∈ 𝔴𝔦𝔱𝔱 we have 𝑐 ⋅ 𝑋 = 0 only if either 𝑐 = 0 or
𝑋 = 0.)

Proof. By construction, the bracket in Definition 15 is bilinear. It is antisymmetric on the basis
vectors ℓ𝑛, 𝑛 ∈ ℤ, so by bilinearity the bracket is antisymmetric. It remains to check that the
bracket satisfies Leibnitz rule (or the Jacobi identity), i.e., that for any 𝑋, 𝑌 , 𝑋 ∈ 𝔴𝔦𝔱𝔱 we have

[𝑋, [𝑌 , 𝑍]] = [[𝑋, 𝑌 ], 𝑍] + [𝑌 , [𝑋, 𝑍]].

This formula is trilinear in 𝑋, 𝑌 , 𝑍, so it suffices to verify it on basis vectors 𝑋 = ℓ𝑛, 𝑌 = ℓ𝑚,
𝑍 = ℓ𝑘. Calculating, with Definition 15, we have

[ℓ𝑛, [ℓ𝑚, ℓ𝑘]] = [ℓ𝑛, (𝑚 − 𝑘)ℓ𝑚+𝑘] = (𝑚 − 𝑘)(𝑛 − (𝑚 + 𝑘)) ℓ𝑛+𝑚+𝑘

and

[[ℓ𝑛, ℓ𝑚], ℓ𝑘] + [ℓ𝑚, [ℓ𝑛, ℓ𝑘]]
= [(𝑛 − 𝑚)ℓ𝑛+𝑚, ℓ𝑘] + [ℓ𝑚, (𝑛 − 𝑘)ℓ𝑛+𝑘]]
= (𝑛 − 𝑚)(𝑛 + 𝑚 − 𝑘) ℓ𝑛+𝑚+𝑘 + (𝑛 − 𝑘)(𝑚 − (𝑛 + 𝑘)) ℓ𝑚+𝑛+𝑘.
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Noting that

(𝑛 − 𝑚)(𝑛 + 𝑚 − 𝑘) + (𝑛 − 𝑘)(𝑚 − (𝑛 + 𝑘)) = (𝑚 − 𝑘)(𝑛 − (𝑚 + 𝑘)),

the Leibniz rule follows.

4.2 Virasoro cocycle
In this section we assume that 𝕂 is a field of characteristic zero and 𝔴𝔦𝔱𝔱 is the Witt algebra over
𝕂 as in Definition 15.

Definition 17 (Virasoro cocycle). The bilinear map 𝛾𝔳𝔦𝔯 ∶ 𝔴𝔦𝔱𝔱×𝔴𝔦𝔱𝔱 → 𝕂 given on basis elements
of 𝔴𝔦𝔱𝔱 by

𝛾𝔳𝔦𝔯(ℓ𝑛, ℓ𝑚) = 𝑛3 − 𝑛
12 𝛿𝑛+𝑚,0

is called the Virasoro cocycle.

Lemma 18 (The Virasoro cocycle is a 2-cocycle). The Virasoro cocycle is a 2-cocycle, 𝛾𝔳𝔦𝔯 ∈
𝐶2(𝔴𝔦𝔱𝔱, 𝕂).
Proof. By the construction if Definition 17, 𝛾𝔳𝔦𝔯 ∶ 𝔴𝔦𝔱𝔱 × 𝔴𝔦𝔱𝔱 → 𝕂 is bilinear. It’s antisymmetry
on basis elements of the Witt algebra is easily checked, so 𝛾𝔳𝔦𝔯 is antisymmetric. It remains to
prove the Leibniz rule for 𝛾𝔳𝔦𝔯, i.e., that for 𝑋, 𝑌 , 𝑋 ∈ 𝔴𝔦𝔱𝔱, we have

𝛾𝔳𝔦𝔯(𝑋, [𝑌 , 𝑍]) = 𝛾𝔳𝔦𝔯([𝑋, 𝑌 ], 𝑍) + 𝛾𝔳𝔦𝔯(𝑌 , [𝑋, 𝑍]). (4.1)

This formula is trilinear in 𝑋, 𝑌 , 𝑍, so it suffices to verify it for basis vectors 𝑋 = ℓ𝑛, 𝑌 = ℓ𝑚,
𝑍 = ℓ𝑘. We calculate

𝛾𝔳𝔦𝔯(ℓ𝑛, [ℓ𝑚, ℓ𝑘]) = 𝛾𝔳𝔦𝔯(ℓ𝑛, (𝑚 − 𝑘)ℓ𝑚+𝑘) (4.2)

= (𝑚 − 𝑘) 𝑛3 − 𝑛
12 𝛿𝑛+𝑚+𝑘,0. (4.3)

and

𝛾𝔳𝔦𝔯([ℓ𝑛, ℓ𝑚], ℓ𝑘) + 𝛾𝔳𝔦𝔯(ℓ𝑚, [ℓ𝑛, ℓ𝑘]) (4.4)
= 𝛾𝔳𝔦𝔯((𝑛 − 𝑚)ℓ𝑛+𝑚, ℓ𝑘) + 𝛾𝔳𝔦𝔯(ℓ𝑚, (𝑛 − 𝑘)ℓ𝑛+𝑘) (4.5)

= (𝑛 − 𝑚) (𝑛 + 𝑚)3 − (𝑛 + 𝑚)
12 𝛿𝑛+𝑚+𝑘,0 + (𝑛 − 𝑘) 𝑚3 − 𝑚

12 𝛿𝑛+𝑚+𝑘,0. (4.6)

Both of the above results are nonzero only if 𝑘 = −(𝑛 + 𝑚), in which case 𝑚 − 𝑘 = 2𝑚 + 𝑛 and
𝑛 − 𝑘 = 2𝑛 + 𝑚, so it suffices to note that

(2𝑚 + 𝑛) (𝑛3 − 𝑛) = (𝑛 − 𝑚) ((𝑛 + 𝑚)3 − (𝑛 + 𝑚)) + (2𝑛 + 𝑚)(𝑚3 − 𝑚)

to verify the Leibniz rule for 𝛾𝔳𝔦𝔯.

Lemma 19 (The Virasoro cocyle is nontrivial). The cohomology class [𝛾𝔳𝔦𝔯] ∈ 𝐻2(𝔴𝔦𝔱𝔱, 𝕂) of
the Virasoro cocycle is nonzero.
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Proof. Assume, by way of contradiction, that 𝛾𝔳𝔦𝔯 ∈ 𝐵2(𝔴𝔦𝔱𝔱, 𝕂), i.e., that 𝛾𝔳𝔦𝔯 = 𝜕𝛽 for some
𝛽 ∈ 𝐶1(𝔴𝔦𝔱𝔱, 𝕂). Then, in particular, for every 𝑛 ∈ ℤ we would have

𝛾𝔳𝔦𝔯(ℓ𝑛, ℓ−𝑛) = 𝛽([ℓ𝑛, ℓ−𝑛]) = 2𝑛 𝛽(ℓ0).

By Definition 17, this would imply

𝑛3 − 𝑛
12 = 2𝑛 𝛽(ℓ0)

for all 𝑛 ∈ ℤ. Considering for example 𝑛 = 3 and 𝑛 = 6, we then get

2 = 6 𝛽(ℓ0) and 35
2 = 12 𝛽(ℓ0),

which obviously yield a contradiction.

4.3 Witt algebra 2-cohomology
Lemma 20 (Witt algebra 2-cocycle condition for basis). For any Witt algebra 2-cocycle 𝛾 ∈
𝐶2(𝔴𝔦𝔱𝔱, 𝕂) with coefficients in 𝕂, we have

(𝑚 − 𝑘) 𝛾(ℓ𝑛, ℓ𝑚+𝑘) + (𝑘 − 𝑛) 𝛾(ℓ𝑚, ℓ𝑛+𝑘) + (𝑛 − 𝑚) 𝛾(ℓ𝑘, ℓ𝑛+𝑚) = 0

for all 𝑛, 𝑚, 𝑘 ∈ ℤ.

Proof. Direct calculation, using Definitions 15 and 2.

Lemma 21 (Witt algebra 2-cocycle support assuming normalization). Let 𝛾 ∈ 𝐶2(𝔴𝔦𝔱𝔱, 𝕂) be
a Witt algebra 2-cocycle such that 𝛾(ℓ0, ℓ𝑛) = 0 for all 𝑛 ∈ ℤ. Then for any 𝑛, 𝑚 ∈ ℤ with
𝑛 + 𝑚 ≠ 0, we have

𝛾(ℓ𝑛, ℓ𝑚) = 0.

Proof. Apply Lemma 20 with 𝑘 = 0. The last term vanishes, and by skew-symmetry of 𝛾, the
first two terms simplify to yield

(𝑚 + 𝑛) 𝛾(ℓ𝑛, ℓ𝑚) = 0,

which, assuming 𝑛 + 𝑚 ≠ 0, yields the asserted equation 𝛾(ℓ𝑛, ℓ𝑚) = 0.

Lemma 22 (Normalization of Witt algebra 2-cocycles). For any 2-cocycle 𝛾 ∈ 𝐶2(𝔴𝔦𝔱𝔱, 𝕂), there
exists a coboundary 𝜕𝛽 with 𝛽 ∈ 𝐶1(𝔴𝔦𝔱𝔱, 𝕂) such that

𝛾 + 𝜕𝛽 = 𝑟 ⋅ 𝛾𝔳𝔦𝔯

for some scalar 𝑟 ∈ 𝕂.

Proof. Let 𝛾 ∈ 𝐶2(𝔴𝔦𝔱𝔱, 𝕂) be a Witt algebra 2-cocycle. Define a Witt algebra 1-cocycle 𝛽 ∈
𝐶1(𝔴𝔦𝔱𝔱, 𝕂) by linear extension of

𝛽(ℓ𝑛) = {− 1
2 𝛾(ℓ1, ℓ−1) if 𝑛 = 0

1
𝑛 𝛾(ℓ0, ℓ𝑛) if 𝑛 ≠ 0.
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For any 𝑛 ≠ 0, we calculate

(𝛾 + 𝜕𝛽)(ℓ0, ℓ𝑛) = 𝛾(ℓ0, ℓ𝑛) + 𝛽([ℓ0, ℓ𝑛])
= 𝛾(ℓ0, ℓ𝑛) − 𝑛 𝛽(ℓ𝑛)

= 𝛾(ℓ0, ℓ𝑛) − 𝑛 1
𝑛𝛾(ℓ0, ℓ𝑛) = 0.

This property and Lemma 21 imply that

(𝛾 + 𝜕𝛽)(ℓ0, ℓ𝑛) = 0
whenever 𝑛 + 𝑚 ≠ 0.

We will show the asserted equation with

𝑟 = 2 (𝛾 + 𝜕𝛽)(ℓ2, ℓ−2).
By comparison with the Virasoro cocycle 𝛾𝔳𝔦𝔯 of Definition 17, and using skew-symmetry, it

remains to show that for any 𝑛 ∈ ℕ we have

(𝛾 + 𝜕𝛽)(ℓ𝑛, ℓ−𝑛) = 𝑟 𝑛3 − 𝑛
12 .

The case 𝑛 = 0 is a direct consequence of antisymmetry. The case 𝑛 = 1 follows using the
definition of 𝛽 and the calculation

(𝛾 + 𝜕𝛽)(ℓ1, ℓ−1) = 𝛾(ℓ1, ℓ−1) + 𝛽([ℓ1, ℓ−1])
= 𝛾(ℓ1, ℓ−1) + 2 𝛽(ℓ0)

= 𝛾(ℓ1, ℓ−1) − 2 1
2𝛾(ℓ1, ℓ−1) = 0.

The case 𝑛 = 2 follows directly by the choice of 𝑟. We prove the equality in the cases 𝑛 ≥ 3 by
induction on 𝑛. Assume the equation for smaller values of 𝑛. Apply Lemma 20 to 𝛾 + 𝜕𝛽 with
𝑚 = 1 − 𝑛 and 𝑘 = −1 to get

0 = (2 − 𝑛) (𝛾 + 𝜕𝛽)(ℓ𝑛, ℓ−𝑛) + (−1 − 𝑛) (𝛾 + 𝜕𝛽)(ℓ1−𝑛, ℓ𝑛−1) + (2𝑛 − 1) (𝛾 + 𝜕𝛽)(ℓ1, ℓ−1)

= (2 − 𝑛) (𝛾 + 𝜕𝛽)(ℓ𝑛, ℓ−𝑛) − (−1 − 𝑛) 𝑟 (𝑛 − 1)3 − (𝑛 − 1)
12

= (2 − 𝑛) (𝛾 + 𝜕𝛽)(ℓ𝑛, ℓ−𝑛) + 𝑟
12(𝑛 + 1)𝑛(𝑛 − 1)(𝑛 − 2).

where in the seciond step we used the induction hypothesis. Since 2 − 𝑛 ≠ 0, this can be solved
for

(𝛾 + 𝜕𝛽)(ℓ𝑛, ℓ−𝑛) = − 𝑟
12

(𝑛 + 1)𝑛(𝑛 − 1)(𝑛 − 2)
2 − 𝑛 = 𝑟𝑛3 − 𝑛

12 ,

completing the induction step.

Lemma 23 (Witt algebra 2-cohomology is spanned by the Virasoro cocycle). The Lie algebra
2-cohomology 𝐻2(𝔴𝔦𝔱𝔱, 𝕂) of the Witt algebra 𝔴𝔦𝔱𝔱 with coefficients in 𝕂 is one-dimensional and
spanned by the class of the Virasoro cocycle 𝛾𝔳𝔦𝔯,

𝐻2(𝔴𝔦𝔱𝔱, 𝕂) = 𝕂 ⋅ [𝛾𝔳𝔦𝔯].
Proof. This follows directly from Lemmas 22 and 19.
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Chapter 5

Virasoro algebra

Definition 24 (Virasoro algebra). Let 𝕂 be a field of characteristic zero. The Virasoro al-
gebra 𝔳𝔦𝔯 is the Lie algebra over 𝕂 obtained as the central extension of the Witt algebra 𝔴𝔦𝔱𝔱
corresponding to the Virasoro cocycle 𝛾𝔳𝔦𝔯 ∈ 𝐶2(𝔴𝔦𝔱𝔱, 𝕂).

From the definition of the Virasoro algebra and the Virasoro cocycle, Definition 24 and 17,
we directly obtain that 𝔳𝔦𝔯 has a basis of the following form.

Definition 25 (The standard basis of the Virasoro algebra). The Virasoro algebra 𝔳𝔦𝔯 has a
basis consisting of (𝐿𝑛)𝑛∈ℤ and 𝐶, with Lie brackets determined by the following

[𝐿𝑛, 𝐿𝑚] = (𝑛 − 𝑚) 𝐿𝑛+𝑚 + 𝛿𝑛+𝑚,0
𝑛3 − 𝑛

12 𝐶,

[𝐶, 𝐿𝑛] = 0, [𝐶, 𝐶] = 0,

for 𝑛, 𝑚 ∈ ℤ.
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Chapter 6

Heisenberg algebra

In this section we assume that 𝕂 is a field of characteristic zero.

Definition 26 (Heisenberg cocycle). Let 𝔤 be the vector space with basis (𝑗𝑘)𝑘∈ℤ over 𝕂, con-
sidered as an abelian Lie algebra. The bilinear map 𝛾𝔥𝔢𝔦 ∶ 𝔤 × 𝔤 → 𝕂 given on basis elements
by

𝛾𝔥𝔢𝔦(𝑗𝑘, 𝑗𝑙) = 𝑘 𝛿𝑘+𝑙,0

is a Lie algebra 2-cocycle, 𝛾𝔥𝔢𝔦 ∈ 𝐶2(𝔤, 𝕂). We call 𝛾𝔥𝔢𝔦 the Heisenberg cocycle.

Lemma 27 (The Heisenberg cocyle is nontrivial). The cohomology class [𝛾𝔥𝔢𝔦] ∈ 𝐻2(𝔤, 𝕂) of the
Heisenberg cocycle is nonzero.

Proof. …

Definition 28 (Heisenberg algebra). Let 𝕂 be a field of characteristic zero. The Heisenberg
algebra 𝔥𝔢𝔦 is the Lie algebra over 𝕂 obtained as the central extension of the abelian Lie algebra
𝔤 with basis (𝑗𝑘)𝑘∈ℤ, corresponding to the Heisenberg cocycle 𝛾𝔥𝔢𝔦 ∈ 𝐶2(𝔤, 𝕂).

From the definition of the Heisenberg algebra and the Heisenberg cocycle, Definition 28
and 26, we directly obtain that 𝔥𝔢𝔦 has a basis of the following form.

Definition 29 (The standard basis of the Heisenberg algebra). The Heisenberg algebra 𝔥𝔢𝔦 has
a basis consisting of (𝐽𝑘)𝑘∈ℤ and 𝐾, with Lie brackets determined by the following

[𝐽𝑘, 𝐽𝑙] = 𝑘 𝛿𝑘+𝑙,0 𝐾, [𝐾, 𝐽𝑘] = 0, [𝐾, 𝐾] = 0,

for 𝑘, 𝑙 ∈ ℤ.
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Chapter 7

Sugawara construction

7.1 The basic bosonic Sugawara construction
Throughout this section, let 𝕂 be a field of characteristic zero.

If a vector space 𝑉 has a representation of the Heisenberg algebra on a vector space 𝑉 , where
the central element 𝐾 (see Definition 29), acts as id𝑉 , then the basis elements (𝐽𝑘)𝑘∈ℤ (see
Definition 29) are linear operators J𝑘 ∶ 𝑉 → 𝑉 satisfying the commutation relations

(HeiComm) [J𝑘, J𝑙] = J𝑘 ∘ J𝑙 − J𝑙 ∘ J𝑘 = 𝑘 𝛿𝑘+𝑙,0 id𝑉 .

Below we will assume such operators being fixed, and satisfying furthermore the local truncation
condition on 𝑉 : for any fixed 𝑣 ∈ 𝑉 we have J𝑘 𝑣 = 0 for 𝑘 ≫ 0, i.e.,

(HeiTrunc) ∀𝑣 ∈ 𝑉 , ∃𝑁, ∀𝑘 ≥ 𝑁, J𝑘 𝑣 = 0.

Definition 30 (Normal ordering). For 𝑘, 𝑙 ∈ ℤ, we denote the normal ordered product of the
operators J𝑘 and J𝑙 by

∶ J𝑘 J𝑙 ∶ ∶= {J𝑘 ∘ J𝑙 if 𝑘 ≤ 𝑙
J𝑙 ∘ J𝑘 if 𝑘 > 𝑙.

Lemma 31 (Alternative normal ordering). Suppose that (J𝑘)𝑘∈ℤ satisfy the commutation rela-
tions (HeiComm). Then for any 𝑘, 𝑙 ∈ ℤ we have

∶ J𝑘 J𝑙 ∶ = {J𝑘 ∘ J𝑙 if 𝑘 < 0
J𝑙 ∘ J𝑘 if 𝑘 ≥ 0.

Proof. Straightforward using the commutation relations (HeiComm).

Lemma 32 (Local truncation for normal ordered products). Suppose that (J𝑘)𝑘∈ℤ satisfy the
local truncation condition (HeiTrunc). Then for any 𝑣 ∈ 𝑉 there exists an 𝑁 such that whenever
max{𝑘, 𝑙} ≥ 𝑁 we have ∶ J𝑘 J𝑙 ∶ 𝑣 = 0.

Proof. Fixing 𝑣 ∈ 𝑉 , the local truncation condition (HeiTrunc) gives the existence of an 𝑁 such
that J𝑘 𝑣 = 0 for 𝑘 ≥ 𝑁 . It is then clear by inspection of Definition 30 that ∶ J𝑘 J𝑙 ∶ 𝑣 = 0 when
max{𝑘, 𝑙} ≥ 𝑁 .
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Lemma 33 (Local finite support for homogeneous normal ordered products). Suppose that
(J𝑘)𝑘∈ℤ satisfy the local truncation condition (HeiTrunc). Then for any 𝑛 ∈ ℤ and any 𝑣 ∈ 𝑉 ,
there are only finitely many 𝑘 ∈ ℤ such that ∶ J𝑛−𝑘 J𝑘 ∶ 𝑣 ≠ 0.

Proof. Straightforward from Lemma 32.

Definition 34 (Sugawara operators). Suppose that (J𝑘)𝑘∈ℤ satisfy the local truncation condition
(HeiTrunc). Then for any 𝑛 ∈ ℤ, a linear operator

L𝑛 ∶ 𝑉 → 𝑉
can be defined by the formula

L𝑛 𝑣 ∶= 1
2 ∑

𝑘∈ℤ
∶ J𝑛−𝑘 J𝑘 ∶ 𝑣 for 𝑣 ∈ 𝑉

(the sum only has finitely many terms by Lemma 33).
We call the operators (L𝑛)𝑛∈ℤ the Sugawara operators.

Lemma 35 (Commutators of Sugawara operators as series). Suppose that (J𝑘)𝑘∈ℤ satisfy the
local truncation condition (HeiTrunc), and suppose that A ∶ 𝑉 → 𝑉 is a linear operator. Then
for any 𝑛 ∈ ℤ, the action of the commutator [L𝑛, A] on any 𝑣 ∈ 𝑉 is given by the series

[L𝑛, A] 𝑣 = 1
2 ∑

𝑘∈ℤ
[∶ J𝑛−𝑘 J𝑘 ∶, A] 𝑣

where only finitely many of the terms are nonzero.

Proof. Write

[L𝑛, 𝐴] 𝑣 = L𝑛 𝐴 𝑣 − 𝐴 L𝑛 𝑣

= 1
2 ∑

𝑘∈ℤ
∶ J𝑛−𝑘 J𝑘 ∶ A 𝑣 − 1

2A ∑
𝑘∈ℤ

∶ J𝑛−𝑘 J𝑘 ∶ 𝑣.

By Lemma 33, only finitely many of the terms in both sums are nonzero and they may be
rearranged to the asserted form of sum of commutators. The resulting sum only has finitely
many nonzero terms and is therefore well-defined.

Lemma 36 (Commutator of Sugawara operators with Heisenberg operators). Suppose that
(J𝑘)𝑘∈ℤ satisfy the commutation relations (HeiComm) and the local truncation condition (HeiTrunc).
Then for any 𝑛 ∈ ℤ and 𝑘 ∈ ℤ, we have

[L𝑛, J𝑘] = −𝑘 J𝑛+𝑘.
Proof. Calculation, using Lemma 35 and the commutator formula [𝐴, 𝐵𝐶] = 𝐵[𝐴, 𝐶] + [𝐴, 𝐵]𝐶.

Lemma 37 (Commutator of Sugawara operators with normal ordered pairs). Suppose that
(J𝑘)𝑘∈ℤ satisfy the commutation relations (HeiComm) and the local truncation condition (HeiTrunc).
Then for any 𝑛 ∈ ℤ and 𝑘, 𝑚 ∈ ℤ, we have

[L𝑛, ∶ J𝑘 J𝑚−𝑘 ∶] = − 𝑘 ∶ J𝑛+𝑘 J𝑚−𝑘 ∶ − (𝑚 − 𝑘) ∶ J𝑘 J𝑛+𝑚−𝑘 ∶
+ (𝑛 + 𝑘) 𝛿𝑛+𝑚,0(𝕀−𝑛≤𝑘<0 − 𝕀0≤𝑘<−𝑛) id𝑉 .

where 𝕀condition is defined as 1 if the condition is true and 0 otherwise.
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Proof. Calculation, using Lemmas 35, 31, and 36, the commutation relations (HeiComm), and
the commutator formula [𝐴, 𝐵𝐶] = 𝐵[𝐴, 𝐶] + [𝐴, 𝐵]𝐶 again.

Lemma 38 (Auxiliary calculation). For any 𝑛 ∈ ℕ, we have

𝑛−1
∑
𝑙=0

(𝑛 − 𝑙)𝑙 = 𝑛3 − 𝑛
6 .

Proof. Calculation (with induction).

Lemma 39 (Virasoro commutation relations for Sugawara operators). Suppose that (J𝑘)𝑘∈ℤ
satisfy the commutation relations (HeiComm) and the local truncation condition (HeiTrunc).
Then for any 𝑛, 𝑚 ∈ ℤ, we have

[L𝑛, L𝑚] = (𝑛 − 𝑚) L𝑛+𝑚 + 𝛿𝑛+𝑚,0
𝑛3 − 𝑛

12 id𝑉 .

Proof. Calculation, using Lemmas 37 and 38, among other observations.

Theorem 40 (Sugawara construction). Suppose that (J𝑘)𝑘∈ℤ satisfy the commutation relations
(HeiComm) and the local truncation condition (HeiTrunc). Then there exists a representation
of the Virasoro algebra 𝔳𝔦𝔯 with central charge 𝑐 = 1 on 𝑉 (i.e., the central element 𝐶 ∈ 𝔳𝔦𝔯 acts
as 𝑐 id𝑉 with 𝑐 = 1) where the basis elements 𝐿𝑛 of 𝔳𝔦𝔯 act by the Sugawara operators (L𝑛)𝑛∈ℤ.

Proof. A direct consequence of the commutation relations in Lemma 39 and a comparison with
the Lie brackets in the basis of Definition 25.
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