MS-C1300 Complex Analysis

1 The complex number system

1.1 The field of complex numbers

Definition 1.1 Complex numbers and their arithmetic operations [Palka1991, Sec. I.1.1]
#

The set of complex numbers is \(\mathbb {C}= \mathbb {R}\times \mathbb {R}\), i.e., the set of pairs \((x,y)\) of real numbers \(x,y \in \mathbb {R}\).

The operations of addition and multiplication on \(\mathbb {C}\) are defined by the formulas

\begin{align*} (x_1,y_2) + (x_2,y_2) = \; & (x_1+x_2, y_1+y_2) \\ (x_1,y_1) \cdot (x_2,y_2) = \; & (x_1 x_2 - y_1 y_2 , \, x_1 y_2 + y_1 x_2) . \end{align*}

Denote \(0 = (0,0) \in \mathbb {C}\) and \(1 = (1,0) \in \mathbb {C}\).

For \(z = (x,y) \in \mathbb {C}\), denote \(-z = (-x,-y) \in \mathbb {C}\) and if \(z \ne 0\) then denote \(z^{-1} = \Big(\frac{x}{x^2 + y^2} , \frac{-y}{x^2 + y^2} \Big) \in \mathbb {C}\).

We write a complex number \((x,y)\) as \(x + \mathfrak {i}\, y\). The compex number \(\mathfrak {i}= (0,1) \in \mathbb {C}\) is called the imaginary unit.

Typically used variable names for complex number are \(z,w,\zeta \in \mathbb {C}\) etc.

Theorem 1.2 The field of complex numbers [Palka1991, Sec. I.1.1]

The set \(\mathbb {C}\) of compex numbers with its operations of addition and multiplication, is a field, i.e., the following properties hold for all \(z, w, z_1, z_2, z_3 \in \mathbb {C}\):

  • \(z + w = w + z\) (commutativity of addition)

  • \(z w = w z\) (commutativity of multiplication)

  • \(z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3\) (associativity of addition)

  • \(z_1 (z_2 z_3) = (z_1 z_2) z_3\) (associativity of multiplication)

  • \(0 = 0 + 0 \, \mathfrak {i}= (0,0) \in \mathbb {C}\) satisfies \(z + 0 = z\) (neutral element for addition)

  • \(1 = 1 + 0 \, \mathfrak {i}= (1,0) \in \mathbb {C}\) satisfies \(z \cdot 1= z\) (neutral element for multiplication)

  • \(z + (-z) = 0\) for any \(z \in \mathbb {C}\) (opposite element / additive inverse)

  • \(z \, z^{-1} = 1\) for any \(z \in \mathbb {C}\setminus \left\{ 0 \right\} \) (multiplicative inverse)

  • \((z_1 + z_2) w = z_1 w + z_2 w\) (distributivity).

Proof

Straightforward calculations using the definitions of the operations (Definition 1.1).

1.2 Conjugate, modulus, and argument

Definition 1.3 Complex conjugate [Palka1991, Sec. I.1.2]

The complex conjugate of a complex number \(z = x + \mathfrak {i}y\) (where \(x,y \in \mathbb {R}\)) is the complex number \(\overline{z} = x - \mathfrak {i}y\).

Lemma 1.4 Properties of complex conjugate [Palka1991, Sec. I.1.2 (1.1)]

For any \(z , w \in \mathbb {C}\), we have

\begin{align*} \overline{\overline{z}} = z , \qquad \overline{z + w} = \overline{z} + \overline{w} , \qquad \overline{z w} = \overline{z} \, \overline{w} , \end{align*}
\begin{align*} \Re \mathfrak {e}(z) = \frac{z + \overline{z}}{2} , \qquad \Im \mathfrak {m}(z) = \frac{z - \overline{z}}{2 \mathfrak {i}} . \end{align*}
Proof

Direct calculations.

Definition 1.5 Absolute value (modulus) [Palka1991, Sec. I.1.2]

The absolute value (or modulus) of a complex number \(z = x + \mathfrak {i}y\) (where \(x,y \in \mathbb {R}\)) is the nonnegative real number \(|z| = \sqrt{x^2 + y^2} \ge 0\).

Lemma 1.6 Properties of absolute value [Palka1991, Sec. I.1.2 (1.2)]

For any \(z, w \in \mathbb {C}\), we have

\begin{align*} |z|^2 = z \, \overline{z} , \qquad |z w| = |z| \, |w| , \end{align*}
\begin{align*} \Re \mathfrak {e}(z) \le |z| , \qquad \Im \mathfrak {m}(z) \le |z| , \end{align*}
\begin{align*} |z + w| \le |z| + |w| , \qquad |z + w| \ge \big| |z| - |w| \big| . \end{align*}

Also, if \(z \ne 0\), then

\begin{align*} z^{-1} = \frac{\overline{z}}{|z|^2} , \qquad \qquad \Big| \frac{w}{z} \Big| = \frac{|w|}{|z|} . \end{align*}
Proof

Straightforward.

Definition 1.7 Argument [Palka1991, Sec. I.1.2]

A real number \(\theta \in \mathbb {R}\) is an argument of a complex number \(z \in \mathbb {C}\) if

\begin{align*} z = |z| \, \Big( \cos (\theta ) + \mathfrak {i}\, \sin (\theta ) \Big) . \end{align*}

(Note/warning: For a nonzero complex number \(z\), it is convenient to denote \(\theta = \arg (z)\), but this is an abuse of notation, the argumentis defined only modulo addition of integer multiples of \(2 \pi \).)

The principal argument of a nonzero complex number \(z \in \mathbb {C}\) is its unique argument on the interval \((-\pi , \pi ]\), and it is denoted by \(\mathrm{Arg}(z)\).

Lemma 1.8 Discontinuity of the principal argument

The principal argument \(\mathrm{Arg}\colon \mathbb {C}\setminus \left\{ 0 \right\} \to (-\pi ,\pi ]\) is continuous on the subset \(\mathbb {C}\setminus (-\infty ,0]\), but it is discontinuous on the negative real axis \((-\infty ,0]\).

1.3 The polar form

Definition 1.9 Complex exponential function

We define the complex exponential function \(\exp : \mathbb {C}\to \mathbb {C}\) by

\begin{align*} \exp (x + \mathfrak {i}y) = e^x \, \big( \cos (y) + \mathfrak {i}\, \sin (y) \big) \qquad \text{ for } x,y \in \mathbb {R}, \end{align*}

where \(e^x\) is the usual real exponential. We also use the notation \(e^z = \exp (z)\) for complex exponentials.

The exponential with purely imaginary argument takes the form of Euler’s formula

\begin{align*} e^{\mathfrak {i}\theta } = \cos (\theta ) + \mathfrak {i}\, \sin (\theta ) \qquad \text{ for } \theta \in \mathbb {R}. \end{align*}
Lemma 1.10 Properties of the complex exponential

For any \(z,w \in \mathbb {C}\) we have

\begin{align*} e^{z + w} = e^z \, e^w. \end{align*}

For any \(z \in \mathbb {C}\) we have

\begin{align*} e^{\overline{z}} = \overline{e^z}, \quad |e^z| = e^{\Re \mathfrak {e}(z)}, \quad \arg (e^z) = \Im \mathfrak {m}(z) \; \; (\mathrm{mod}~ 2\pi ). \end{align*}

For \(z,w \in \mathbb {C}\) we have \(e^{z} = e^{w}\) if and only if \(z = w + 2 \pi \mathfrak {i}n\) for some \(n \in \mathbb {Z}\).

Proof

Lemma 1.11 Polar form

Every complex number \(z \in \mathbb {C}\) can be written in the polar form

\begin{align*} z = r \, e^{\mathfrak {i}\theta } \qquad \text{ where $r \ge 0$ and $\theta \in \mathbb {R}$.} \end{align*}

The modulus of \(z\) is the number \(r = |z|\) above. If \(z \ne 0\), then \(\theta \) above is a choice of the argument of \(z\), i.e., \(\theta = \mathrm{Arg}(z) + 2 \pi m\) for some \(m \in \mathbb {Z}\).

Proof

Lemma 1.12 Multiplication in polar form [Palka1991, Sec. I.1.2 (1.6)]

For any \(z,w \in \mathbb {C}\), written in polar form as \(z = r e^{\mathfrak {i}\theta }\) and \(w = r' e^{\mathfrak {i}\theta '}\), the product can be written in polar form as

\begin{align*} z w = r r’ \, e^{\mathfrak {i}(\theta + \theta ')} . \end{align*}

In other words,

\begin{align*} |z w| = |z| \, |w| \qquad \text{ and } \qquad \arg (z w) = \arg (z) + \arg (w) \; \; (\mathrm{mod}~ 2\pi ). \end{align*}
Proof

Theorem 1.13 De Moivre’s formula [Palka1991, Sec. I.1.2 (1.7)]

For any \(\theta \in \mathbb {R}\) and \(n \in \mathbb {Z}\), we have

\begin{align*} \big( \cos (\theta ) + \mathfrak {i}\, \sin (\theta ) \big)^n = \cos (n \theta ) + \mathfrak {i}\, \sin (n \theta ) . \end{align*}
Proof

Induction using Lemma 1.12.

Lemma 1.14 Roots of unity

For any \(n \in \mathbb {N}\), the solutions \(z \in \mathbb {C}\) to the equation

\begin{align*} z^n = 1 \end{align*}

are the \(n\) distinct complex numbers

\begin{align*} z_j \, = \, e^{\mathfrak {i}2 \pi j / n} \, = \, \cos \Big( \frac{2 \pi j}{n} \Big) + \mathfrak {i}\, \sin \Big( \frac{2 \pi j}{n} \Big) \qquad \text{ where } j = 0, 1, \ldots , n-1 . \end{align*}

These solutions are called the (complex) \(n\)th roots of unity.

In particular, we have the polynomial factorization

\begin{align*} z^n - 1 \, = \, \prod _{j=0}^{n-1} \Big( z - e^{\mathfrak {i}2 \pi j / n} \Big) . \end{align*}
Proof

1.4 Functions of a complex variable

1.4.1 Polynomials and rational functions

Definition 1.15 Polynomial
#

Polynomial functions are functions \(p : \mathbb {C}\to \mathbb {C}\) of the form

\begin{align*} p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0 \end{align*}

where \(a_0,a_1,\ldots ,a_{n-1},a_n \in \mathbb {C}\) are coefficients.

Definition 1.16 Rational function

Rational functions are functions \(f : D \to \mathbb {C}\) which can be written as ratios \(f(z) = \frac{p(z)}{q(z)}\) of two polynomials \(p, q \colon \mathbb {C}\to \mathbb {C}\) on a domain \(D \subset \mathbb {C}\) where the denominator polynomial \(q\) has no zeroes.

1.4.2 Exponentials and branches of logarithms

Definition 1.17 Principal complex logarithm

The principal logarithm is the function

\begin{align*} \mathrm{Log}\colon \; & \mathbb {C}\setminus \left\{ 0 \right\} \to \mathbb {C}\\ \mathrm{Log}(z) \, = \; & \log |z| + \mathfrak {i}\, \mathrm{Arg}(z) , \end{align*}

where \(\log |z|\) is the usual natural logarithm of the positive real number \(|z|{\gt}0\) and \(\mathrm{Arg}(z) \in (-\pi ,\pi ]\) is the principal argument of the nonzero complex number \(z \ne 0\).

(Directly from this definition one sees that for \(z \in \mathbb {C}\setminus \left\{ 0 \right\} \) we have \(e^{\mathrm{Log}(z)} = z\). All complex solutions \(w\) to \(e^w = z\) are of the form \(w = \mathrm{Log}(z) + 2 \pi \mathfrak {i}n\) where \(n \in \mathbb {Z}\).)

Definition 1.18 Branches of complex logarithm

A branch of the logarithm is a continuous function \(\ell \colon U \to \mathbb {C}\) on an open set \(U \subset \mathbb {C}\) such that

\begin{align*} e^{\ell (z)} = z \qquad \text{ for all } z \in U . \end{align*}

For example, the principal logarithm \(\mathrm{Log}\) restricted to the open set \(\mathbb {C}\setminus (-\infty ,0]\) is called the principal branch of the logarithm. Note that this principal branch cannot be extended continuously to the negative real axis.

(Note that since \(e^w \ne 0\) for all \(w \in \mathbb {C}\), any branch of the logarithm must exclude the origin from its domain of definition, \(0 \notin U\).)

1.4.3 Complex power functions

Definition 1.19 Principal complex power function

Let \(\alpha \in \mathbb {C}\). The principal (complex) \(\alpha \)th power function is the function \(\mathbb {C}\setminus \left\{ 0 \right\} \to \mathbb {C}\) given by

\begin{align*} z \, \mapsto \, z^\alpha \, := \, e^{\alpha \, \mathrm{Log}(z)} . \end{align*}

(Note: Integer powers have more direct natural definitions. For \(n \in \mathbb {N}\) we simply define \(z^n\) by recursive multiplication and the function \(z \mapsto z^n\) is continuous and defined in all of \(\mathbb {C}\) and coincides with the principal power function with \(\alpha = n\) on \(\mathbb {C}\setminus \left\{ 0 \right\} \). We also define \(z^{-n}\) by recursive multiplication of the inverse \(z^{-1}\) of \(z\), and the function \(z \mapsto z^{-n}\) is continuous on \(\mathbb {C}\setminus \left\{ 0 \right\} \) and coincides with the principal power function with \(\alpha = -n\). For \(n = 0\) we define \(z^0 = 1\) for any \(z \in \mathbb {C}\), and this coincides with the principal power function with \(\alpha = 0\) on \(\mathbb {C}\setminus \left\{ 0 \right\} \).)

Given a branch \(\ell \colon U \to \mathbb {C}\) of logarithm on an open set \(U \subset \mathbb {C}\), we obtain a branch of the \(\alpha \)th power function on \(U\) by the formula \(z \mapsto e^{\alpha \ell (z)}\). Using the same branch of the logarithm for the power functions, we have \(z^\alpha z^\beta = z^{\alpha + \beta }\).

1.4.4 Branches of \(n\)th roots

Definition 1.20 Principal \(n\)th root function

Let \(n \in \mathbb {N}\). The principal (complex) \(n\)th root of \(z \in \mathbb {C}\setminus \left\{ 0 \right\} \) is

\begin{align*} \sqrt[n]{z} \; := \, z^{1/n} \, = \, e^{\frac{1}{n} \mathrm{Log}(z)} . \end{align*}

(It follows directly from the definition and the properties of complex exponential that \((\sqrt[n]{z})^n = z\). All complex solutions \(w\) to \(w^n = z\) are of the form \(w = \zeta \sqrt[n]{z}\) where \(\zeta = e^{2 \pi \mathfrak {i}j / n}\) with \(j = 0, 1, \ldots , n-1\), i.e., \(\zeta \) is one of the \(n\) complex \(n\)th roots of unity.)