Documentation

Mathlib.Algebra.Algebra.Spectrum.Pi

Spectrum and quasispectrum of products #

This file contains results regarding the spectra and quasispectra of (indexed) products of elements of a (non-unital) ring. The main result is that the (quasi)spectrum of a product is the union of the (quasi)spectra.

Main declarations #

TODO #

def PreQuasiregular.toPi {ι : Type u_1} (κ : ιType u_5) [(i : ι) → NonUnitalSemiring (κ i)] :
PreQuasiregular ((i : ι) → κ i) ≃* ((i : ι) → PreQuasiregular (κ i))

The equivalence between pre-quasiregular elements of an indexed product and the indexed product of pre-quasiregular elements.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The equivalence between pre-quasiregular elements of a product and the product of pre-quasiregular elements.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem isQuasiregular_pi_iff {ι : Type u_1} {κ : ιType u_5} [(i : ι) → NonUnitalSemiring (κ i)] (x : (i : ι) → κ i) :
      IsQuasiregular x ∀ (i : ι), IsQuasiregular (x i)
      theorem quasispectrum.mem_iff_of_isUnit {A : Type u_2} {R : Type u_4} [CommSemiring R] [NonUnitalRing A] [Module R A] {a : A} {r : R} (hr : IsUnit r) :
      theorem Pi.spectrum_eq {ι : Type u_1} {R : Type u_4} {κ : ιType u_5} [CommSemiring R] [(i : ι) → Ring (κ i)] [(i : ι) → Algebra R (κ i)] (a : (i : ι) → κ i) :
      spectrum R a = ⋃ (i : ι), spectrum R (a i)
      theorem Prod.spectrum_eq {A : Type u_2} {B : Type u_3} {R : Type u_4} [CommSemiring R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] (a : A) (b : B) :
      theorem Pi.quasispectrum_eq {ι : Type u_1} {R : Type u_4} {κ : ιType u_5} [Nonempty ι] [CommSemiring R] [(i : ι) → NonUnitalRing (κ i)] [(i : ι) → Module R (κ i)] (a : (i : ι) → κ i) :
      quasispectrum R a = ⋃ (i : ι), quasispectrum R (a i)
      theorem Prod.quasispectrum_eq {A : Type u_2} {B : Type u_3} {R : Type u_4} [CommSemiring R] [NonUnitalRing A] [NonUnitalRing B] [Module R A] [Module R B] (a : A) (b : B) :