Spectrum and quasispectrum of products #
This file contains results regarding the spectra and quasispectra of (indexed) products of elements of a (non-unital) ring. The main result is that the (quasi)spectrum of a product is the union of the (quasi)spectra.
Main declarations #
Pi.spectrum_eq
:spectrum R a = ⋃ i, spectrum R (a i)
fora : ∀ i, κ i
Prod.spectrum_eq
:spectrum R ⟨a, b⟩ = spectrum R a ∪ spectrum R b
Pi.quasispectrum_eq
:quasispectrum R a = ⋃ i, quasispectrum R (a i)
fora : ∀ i, κ i
Prod.quasispectrum_eq
:quasispectrum R ⟨a, b⟩ = quasispectrum R a ∪ quasispectrum R b
TODO #
- Apply these results to block matrices.
The equivalence between pre-quasiregular elements of an indexed product and the indexed product of pre-quasiregular elements.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
PreQuasiregular.toProd
(A : Type u_2)
(B : Type u_3)
[NonUnitalSemiring A]
[NonUnitalSemiring B]
:
The equivalence between pre-quasiregular elements of a product and the product of pre-quasiregular elements.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
isQuasiregular_pi_iff
{ι : Type u_1}
{κ : ι → Type u_5}
[(i : ι) → NonUnitalSemiring (κ i)]
(x : (i : ι) → κ i)
:
theorem
isQuasiregular_prod_iff
{A : Type u_2}
{B : Type u_3}
[NonUnitalSemiring A]
[NonUnitalSemiring B]
(a : A)
(b : B)
:
theorem
quasispectrum.mem_iff_of_isUnit
{A : Type u_2}
{R : Type u_4}
[CommSemiring R]
[NonUnitalRing A]
[Module R A]
{a : A}
{r : R}
(hr : IsUnit r)
:
theorem
Pi.quasispectrum_eq
{ι : Type u_1}
{R : Type u_4}
{κ : ι → Type u_5}
[Nonempty ι]
[CommSemiring R]
[(i : ι) → NonUnitalRing (κ i)]
[(i : ι) → Module R (κ i)]
(a : (i : ι) → κ i)
:
theorem
Prod.quasispectrum_eq
{A : Type u_2}
{B : Type u_3}
{R : Type u_4}
[CommSemiring R]
[NonUnitalRing A]
[NonUnitalRing B]
[Module R A]
[Module R B]
(a : A)
(b : B)
: