Documentation

Mathlib.Algebra.Order.Group.InjSurj

Pull back ordered groups along injective maps. #

@[deprecated Function.Injective.isOrderedMonoid (since := "2025-04-10")]
theorem Function.Injective.orderedCommGroup {α : Type u} {β : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedMonoid α] [One β] [Mul β] [Pow β ] (f : βα) (hf : Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) :
let x := Injective.commMonoid f hf one mul npow; let x_1 := PartialOrder.lift f hf; IsOrderedMonoid β

Alias of Function.Injective.isOrderedMonoid.


Pullback an IsOrderedMonoid under an injective map.

@[deprecated Function.Injective.isOrderedAddMonoid (since := "2025-04-10")]
theorem Function.Injective.orderedAddCommGroup {α : Type u} {β : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] [Zero β] [Add β] [SMul β] (f : βα) (hf : Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) :
let x := Injective.addCommMonoid f hf one mul npow; let x_1 := PartialOrder.lift f hf; IsOrderedAddMonoid β

Alias of Function.Injective.isOrderedAddMonoid.


Pullback an IsOrderedAddMonoid under an injective map.

@[deprecated Function.Injective.isOrderedMonoid (since := "2025-04-10")]
theorem Function.Injective.linearOrderedCommGroup {α : Type u} {β : Type u_1} [CommMonoid α] [PartialOrder α] [IsOrderedMonoid α] [One β] [Mul β] [Pow β ] (f : βα) (hf : Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) :
let x := Injective.commMonoid f hf one mul npow; let x_1 := PartialOrder.lift f hf; IsOrderedMonoid β

Alias of Function.Injective.isOrderedMonoid.


Pullback an IsOrderedMonoid under an injective map.

@[deprecated Function.Injective.isOrderedAddMonoid (since := "2025-04-10")]
theorem Function.Injective.linearOrderedAddCommGroup {α : Type u} {β : Type u_1} [AddCommMonoid α] [PartialOrder α] [IsOrderedAddMonoid α] [Zero β] [Add β] [SMul β] (f : βα) (hf : Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) :
let x := Injective.addCommMonoid f hf one mul npow; let x_1 := PartialOrder.lift f hf; IsOrderedAddMonoid β

Alias of Function.Injective.isOrderedAddMonoid.


Pullback an IsOrderedAddMonoid under an injective map.