Monoid objects internal to monoidal opposites #
In this file, we record the equivalence between Mon_ C and Mon Cᴹᵒᵖ.
instance
Mon_Class.mopMon_Class
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[Mon_Class M]
:
If M : C is a monoid object, then mop M : Cᴹᵒᵖ too.
Equations
- Mon_Class.mopMon_Class M = { one := Mon_Class.one.mop, mul := Mon_Class.mul.mop, one_mul := ⋯, mul_one := ⋯, mul_assoc := ⋯ }
@[simp]
theorem
Mon_Class.mopMon_Class_one_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[Mon_Class M]
:
@[simp]
theorem
Mon_Class.mopMon_Class_mul_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[Mon_Class M]
:
instance
Mon_Class.mop_isMon_Hom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{M : C}
[Mon_Class M]
{N : C}
[Mon_Class N]
(f : M ⟶ N)
[IsMon_Hom f]
:
If f is a morphism of monoid objects internal to C,
then f.mop is a morphism of monoid objects internal to Cᴹᵒᵖ.
instance
Mon_Class.unmopMon_Class
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[Mon_Class M]
:
If M : Cᴹᵒᵖ is a monoid object, then unmop M : C too.
Equations
- Mon_Class.unmopMon_Class M = { one := Mon_Class.one.unmop, mul := Mon_Class.mul.unmop, one_mul := ⋯, mul_one := ⋯, mul_assoc := ⋯ }
theorem
Mon_Class.unmopMon_Class_one
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[Mon_Class M]
:
theorem
Mon_Class.unmopMon_Class_mul
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[Mon_Class M]
:
instance
Mon_Class.unmop_isMon_Hom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{M : Cᴹᵒᵖ}
[Mon_Class M]
{N : Cᴹᵒᵖ}
[Mon_Class N]
(f : M ⟶ N)
[IsMon_Hom f]
:
If f is a morphism of monoid objects internal to Cᴹᵒᵖ,
so is f.unmop.
def
Mon_Class.mopEquiv
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
:
The equivalence of categories between monoids internal to C
and monoids internal to the monoidal opposite of C.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Mon_Class.mopEquiv_functor_obj_mon_one_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ C)
:
@[simp]
theorem
Mon_Class.mopEquiv_unitIso_hom_app_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
:
@[simp]
theorem
Mon_Class.mopEquiv_inverse_obj_X
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
Mon_Class.mopEquiv_inverse_obj_mon_mul
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
Mon_Class.mopEquiv_functor_obj_X_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ C)
:
@[simp]
theorem
Mon_Class.mopEquiv_counitIso_hom_app_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
Mon_Class.mopEquiv_inverse_obj_mon_one
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
Mon_Class.mopEquiv_unitIso_inv_app_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
:
@[simp]
theorem
Mon_Class.mopEquiv_inverse_map_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{X✝ Y✝ : Mon_ Cᴹᵒᵖ}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
Mon_Class.mopEquiv_functor_obj_mon_mul_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ C)
:
@[simp]
theorem
Mon_Class.mopEquiv_counitIso_inv_app_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
Mon_Class.mopEquiv_functor_map_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{X✝ Y✝ : Mon_ C}
(f : X✝ ⟶ Y✝)
:
def
Mon_Class.mopEquivCompForgetIso
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
:
(mopEquiv C).functor.comp (Mon_.forget Cᴹᵒᵖ) ≅ (Mon_.forget C).comp (CategoryTheory.MonoidalOpposite.mopEquiv C).functor
The equivalence of categories between monoids internal to C
and monoids internal to the monoidal opposite of C lies over
the equivalence C ≌ Cᴹᵒᵖ via the forgetful functors.
Equations
Instances For
@[simp]
theorem
Mon_Class.mopEquivCompForgetIso_hom_app_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
:
@[simp]
theorem
Mon_Class.mopEquivCompForgetIso_inv_app_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
: