Documentation

VirasoroProject.CyclicTripleSum

Cyclic triple sums #

Cyclic triple sums are meant as auxiliary tools for proving properties like Jacobi identities and Lie algebra 2-cocycle conditions.

Main definitions #

Main statements #

A number of easy but convenient auxiliary properties towards trilinearity of cyclicTripleSumHom β φ (which is mathematically trivial but should not be repeated too often in Lean) are proven for the cyclic triple sums:

Tags #

Jacobi identity, Lie algebra 2-cocycle condition

Cyclic triple sums as tools for Jacobi identities and 2-cocycle conditions #

def VirasoroProject.cyclicTripleSum {V : Type u_1} {W : Type u_2} [Add W] (β : VVV) (φ : VVW) (x y z : V) :
W

An auxiliary function for proofs of Jacobi identities etc.

Given functions β : V × V → V and φ : V × V → W where W has additive structure, cyclicTripleSum β φ is the function of three variables on V defined by: ⟨x,y,z⟩ ↦ φ(x,β(y,z)) + φ(y,β(z,x)) + φ(z,β(x,y)).

Equations
Instances For
    theorem VirasoroProject.cyclicTripleSum_apply {V : Type u_1} {W : Type u_2} [Add W] (β : VVV) (φ : VVW) (x y z : V) :
    cyclicTripleSum β φ x y z = φ x (β y z) + φ y (β z x) + φ z (β x y)
    theorem VirasoroProject.cyclicTripleSum_cyclic {V : Type u_1} {W : Type u_2} [AddCommMonoid W] (β : VVV) (φ : VVW) (x y z : V) :
    cyclicTripleSum β φ x y z = cyclicTripleSum β φ y z x
    theorem VirasoroProject.cyclicTripleSum_cyclic' {V : Type u_1} {W : Type u_2} [AddCommMonoid W] (β : VVV) (φ : VVW) (x y z : V) :
    cyclicTripleSum β φ x y z = cyclicTripleSum β φ z x y
    theorem VirasoroProject.cyclicTripleSum_map_add_fst_of_map_add {V : Type u_1} {W : Type u_2} [AddCommMonoid W] [Add V] (β : VVV) (φ : VVW) (h : ∀ (x y z₁ z₂ : V), cyclicTripleSum β φ x y (z₁ + z₂) = cyclicTripleSum β φ x y z₁ + cyclicTripleSum β φ x y z₂) (x₁ x₂ y z : V) :
    cyclicTripleSum β φ (x₁ + x₂) y z = cyclicTripleSum β φ x₁ y z + cyclicTripleSum β φ x₂ y z
    theorem VirasoroProject.cyclicTripleSum_map_add_snd_of_map_add {V : Type u_1} {W : Type u_2} [AddCommMonoid W] [Add V] (β : VVV) (φ : VVW) (h : ∀ (x y z₁ z₂ : V), cyclicTripleSum β φ x y (z₁ + z₂) = cyclicTripleSum β φ x y z₁ + cyclicTripleSum β φ x y z₂) (x y₁ y₂ z : V) :
    cyclicTripleSum β φ x (y₁ + y₂) z = cyclicTripleSum β φ x y₁ z + cyclicTripleSum β φ x y₂ z
    theorem VirasoroProject.cyclicTripleSum_map_smul_fst_of_map_smul {V : Type u_1} {W : Type u_2} [AddCommMonoid W] {R : Type u_3} [SMul R V] [SMul R W] (β : VVV) (φ : VVW) (h : ∀ (c : R) (x y z : V), cyclicTripleSum β φ x y (c z) = c cyclicTripleSum β φ x y z) (c : R) (x y z : V) :
    cyclicTripleSum β φ (c x) y z = c cyclicTripleSum β φ x y z
    theorem VirasoroProject.cyclicTripleSum_map_smul_snd_of_map_smul {V : Type u_1} {W : Type u_2} [AddCommMonoid W] {R : Type u_3} [SMul R V] [SMul R W] (β : VVV) (φ : VVW) (h : ∀ (c : R) (x y z : V), cyclicTripleSum β φ x y (c z) = c cyclicTripleSum β φ x y z) (c : R) (x y z : V) :
    cyclicTripleSum β φ x (c y) z = c cyclicTripleSum β φ x y z
    theorem VirasoroProject.cyclicTripleSum_map_add_of_bilin {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] (β : V →+ V →+ V) (φ : V →+ V →+ W) (x y z₁ z₂ : V) :
    cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y (z₁ + z₂) = cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y z₁ + cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y z₂
    theorem VirasoroProject.cyclicTripleSum_map_add_snd_of_bilin {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] (β : V →+ V →+ V) (φ : V →+ V →+ W) (x y₁ y₂ z : V) :
    cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x (y₁ + y₂) z = cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y₁ z + cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y₂ z
    theorem VirasoroProject.cyclicTripleSum_map_add_fst_of_bilin {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] (β : V →+ V →+ V) (φ : V →+ V →+ W) (x₁ x₂ y z : V) :
    cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) (x₁ + x₂) y z = cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x₁ y z + cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x₂ y z
    theorem VirasoroProject.cyclicTripleSum_map_smul_of_bilin {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] {𝕜 : Type u_3} [CommSemiring 𝕜] [Module 𝕜 V] [Module 𝕜 W] (β : V →ₗ[𝕜] V →ₗ[𝕜] V) (φ : V →ₗ[𝕜] V →ₗ[𝕜] W) (c : 𝕜) (x y z : V) :
    cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y (c z) = c cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y z
    theorem VirasoroProject.cyclicTripleSum_map_smul_fst_of_bilin {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] {𝕜 : Type u_3} [CommSemiring 𝕜] [Module 𝕜 V] [Module 𝕜 W] (β : V →ₗ[𝕜] V →ₗ[𝕜] V) (φ : V →ₗ[𝕜] V →ₗ[𝕜] W) (c : 𝕜) (x y z : V) :
    cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) (c x) y z = c cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y z
    theorem VirasoroProject.cyclicTripleSum_map_smul_snd_of_bilin {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] {𝕜 : Type u_3} [CommSemiring 𝕜] [Module 𝕜 V] [Module 𝕜 W] (β : V →ₗ[𝕜] V →ₗ[𝕜] V) (φ : V →ₗ[𝕜] V →ₗ[𝕜] W) (c : 𝕜) (x y z : V) :
    cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x (c y) z = c cyclicTripleSum (fun (a : V) => (β a)) (fun (a : V) => (φ a)) x y z
    def LinearMap.toBiadditive {V₁ : Type u_1} {V₂ : Type u_2} {V₃ : Type u_3} [AddCommMonoid V₁] [AddCommMonoid V₂] [AddCommMonoid V₃] {R₁ : Type u_4} {R₂ : Type u_5} {R₃ : Type u_6} [CommSemiring R₁] [CommSemiring R₂] [CommSemiring R₃] {σ : R₁ →+* R₃} {τ : R₂ →+* R₃} [Module R₁ V₁] [Module R₂ V₂] [Module R₃ V₃] (f : V₁ →ₛₗ[σ] V₂ →ₛₗ[τ] V₃) :
    V₁ →+ V₂ →+ V₃

    "Coerce" a bilinear map into a biadditive map.

    Equations
    • f.toBiadditive = { toFun := fun (x : V₁) => { toFun := fun (y : V₂) => (f x) y, map_zero' := , map_add' := }, map_zero' := , map_add' := }
    Instances For
      noncomputable def VirasoroProject.cyclicTripleSumHom {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] {𝕜 : Type u_3} [CommSemiring 𝕜] [Module 𝕜 V] [Module 𝕜 W] (β : V →ₗ[𝕜] V →ₗ[𝕜] V) (φ : V →ₗ[𝕜] V →ₗ[𝕜] W) :
      V →ₗ[𝕜] V →ₗ[𝕜] V →ₗ[𝕜] W

      An auxiliary trilinear map for proofs of Jacobi identities.

      Given bilinear functions β : V × V → V and φ : V × V → W, cyclicTripleSumHom β φ is the trilinear function on V defined by: ⟨x,y,z⟩ ↦ φ(x,β(y,z)) + φ(y,β(z,x)) + φ(z,β(x,y)).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem VirasoroProject.cyclicTripleSumHom_apply {V : Type u_1} {W : Type u_2} [AddCommMonoid V] [AddCommMonoid W] {𝕜 : Type u_3} [CommSemiring 𝕜] [Module 𝕜 V] [Module 𝕜 W] (β : V →ₗ[𝕜] V →ₗ[𝕜] V) (φ : V →ₗ[𝕜] V →ₗ[𝕜] W) (x y z : V) :
        (((cyclicTripleSumHom β φ) x) y) z = (φ x) ((β y) z) + (φ y) ((β z) x) + (φ z) ((β x) y)