Documentation

VirasoroProject.LieVerma

Verma modules for Lie algebras with triangular decomposition #

This file defines Verma modules used in Lie algebra representation theory.

Main definitions #

Main statements #

Implementation notes #

Verma modules over Lie algebras are defined as a special case of generalized Verma module for algebras (see the file VermaModule.lean).

Tags #

Verma module, Lie algebra, representation

structure VirasoroProject.TriangularDecomposition (𝕜 : Type u_1) [CommRing 𝕜] (𝓰 : Type u_2) [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] :
Type u_2

A triangular decomposition of a Lie algebra (without assumptions of commutativity of the Cartan subalgebra or nilpotency of the other parts bundled, yet).

Instances For
    def VirasoroProject.TriangularDecomposition.ofBasis {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {ι : Type u_3} [Nontrivial 𝕜] [NoZeroSMulDivisors 𝕜 𝓰] (B : Module.Basis ι 𝕜 𝓰) (Bp : SignTypeSet ι) (Bp_disj : Pairwise fun (ε₁ ε₂ : SignType) => Disjoint (Bp ε₁) (Bp ε₂)) (Bp_cover : ⋃ (ε : SignType), Bp ε = Set.univ) :
    Equations
    Instances For
      noncomputable def VirasoroProject.TriangularDecomposition.ofBasis.basis_part {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {ι : Type u_3} [Nontrivial 𝕜] [NoZeroSMulDivisors 𝕜 𝓰] (B : Module.Basis ι 𝕜 𝓰) (Bp : SignTypeSet ι) (Bp_disj : Pairwise fun (ε₁ ε₂ : SignType) => Disjoint (Bp ε₁) (Bp ε₂)) (Bp_cover : ⋃ (ε : SignType), Bp ε = Set.univ) (ε : SignType) :
      Module.Basis (↑(Bp ε)) 𝕜 ((ofBasis B Bp Bp_disj Bp_cover).part ε)

      The parts of a triangular decomposition determined by a basis have natural bases by construction.

      Equations
      Instances For
        @[reducible, inline]
        abbrev VirasoroProject.TriangularDecomposition.cartan {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] (tri : TriangularDecomposition 𝕜 𝓰) :
        Submodule 𝕜 𝓰

        The Cartan subalgebra of a given triangular decomposition of a Lie algebra.

        Equations
        Instances For
          @[reducible, inline]
          abbrev VirasoroProject.TriangularDecomposition.upper {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] (tri : TriangularDecomposition 𝕜 𝓰) :
          Submodule 𝕜 𝓰
          Equations
          Instances For
            @[reducible, inline]
            abbrev VirasoroProject.TriangularDecomposition.lower {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] (tri : TriangularDecomposition 𝕜 𝓰) :
            Submodule 𝕜 𝓰
            Equations
            Instances For
              @[reducible, inline]
              abbrev VirasoroProject.TriangularDecomposition.weight {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] (tri : TriangularDecomposition 𝕜 𝓰) :
              Type (max u_2 u_1)

              Weights of a Lie algebra with triangular decomposition are functionals on the Cartan subalgebra.

              Equations
              Instances For
                noncomputable def VirasoroProject.TriangularDecomposition.weightHW {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) (i : tri.cartan tri.upper) :
                𝓤 𝕜 𝓰 × 𝕜

                The data associated to a weight for the purpose of constructing a highest weight representation.

                Equations
                Instances For
                  def VirasoroProject.TriangularDecomposition.VermaHW {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) :
                  Type (max u_2 u_1)

                  The Verma module of highest weight η.

                  Equations
                  Instances For
                    noncomputable def VirasoroProject.TriangularDecomposition.VermaHW.hwVec {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) :

                    The highest weight vector of the Verma module of highest weight η.

                    Equations
                    Instances For
                      instance VirasoroProject.TriangularDecomposition.instIsScalarTower𝓤VermaHW {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) :
                      IsScalarTower 𝕜 (𝓤 𝕜 𝓰) (VermaHW η)
                      theorem VirasoroProject.TriangularDecomposition.VermaHW.smul_eq_algebraHom_smul {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} {η : tri.weight} (r : 𝕜) (v : VermaHW η) :
                      r v = (algebraMap 𝕜 (𝓤 𝕜 𝓰)) r v
                      instance VirasoroProject.TriangularDecomposition.instSMulCommClass𝓤VermaHW {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) :
                      SMulCommClass 𝕜 (𝓤 𝕜 𝓰) (VermaHW η)
                      theorem VirasoroProject.TriangularDecomposition.VermaHW.hwVec_cyclic {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) :
                      theorem VirasoroProject.TriangularDecomposition.VermaHW.upper_smul_hwVec {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) {E : 𝓰} (hE : E tri.upper) :
                      (ιUEA 𝕜) E hwVec η = 0
                      theorem VirasoroProject.TriangularDecomposition.VermaHW.cartan_smul_hwVec {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) {H : 𝓰} (hH : H tri.cartan) :
                      (ιUEA 𝕜) H hwVec η = η H, hH hwVec η
                      noncomputable def VirasoroProject.TriangularDecomposition.VermaHW.universalMap {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) (M : Type u_3) [AddCommGroup M] [Module (𝓤 𝕜 𝓰) M] {hwv : M} (hwv_cartan : ∀ {H : 𝓰} (hH : H tri.cartan), (ιUEA 𝕜) H hwv = (algebraMap 𝕜 (𝓤 𝕜 𝓰)) (η H, hH) hwv) (hwv_upper : ∀ {E : 𝓰}, E tri.upper(ιUEA 𝕜) E hwv = 0) :
                      VermaHW η →ₗ[𝓤 𝕜 𝓰] M
                      Equations
                      Instances For
                        theorem VirasoroProject.TriangularDecomposition.VermaHW.universalMap_hwVec {𝕜 : Type u_1} [CommRing 𝕜] {𝓰 : Type u_2} [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] {tri : TriangularDecomposition 𝕜 𝓰} (η : tri.weight) (M : Type u_3) [AddCommGroup M] [Module (𝓤 𝕜 𝓰) M] {hwv : M} (hwv_cartan : ∀ {H : 𝓰} (hH : H tri.cartan), (ιUEA 𝕜) H hwv = (algebraMap 𝕜 (𝓤 𝕜 𝓰)) (η H, hH) hwv) (hwv_upper : ∀ {E : 𝓰}, E tri.upper(ιUEA 𝕜) E hwv = 0) :
                        (universalMap η M ) (hwVec η) = hwv
                        class VirasoroProject.HasCentralValue (𝕜 : Type u_1) [CommRing 𝕜] (𝓰 : Type u_2) [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] (M : Type u_3) [AddCommGroup M] [Module 𝕜 M] [Module (𝓤 𝕜 𝓰) M] (C : 𝓰) (c : 𝕜) :

                        A type class for recording that a (central) element acts as a particular scalar on a representation.

                        Instances
                          @[simp]
                          theorem VirasoroProject.HasCentralValue.central_smul (𝕜 : Type u_1) [CommRing 𝕜] (𝓰 : Type u_2) [LieRing 𝓰] [LieAlgebra 𝕜 𝓰] (M : Type u_3) [AddCommGroup M] [Module 𝕜 M] [Module (𝓤 𝕜 𝓰) M] {C : 𝓰} {c : 𝕜} [HasCentralValue 𝕜 𝓰 M C c] (v : M) :
                          (ιUEA 𝕜) C v = c v